

SARS-CoV-2 variants: current situation and future scenarios

Luca Freschi, ECDC 20 October 2022

Current situation

Breakdown of SARS-CoV-2 cases by variant in the EU/EEA

Current situation: characteristics

<u>1. Diversification</u> – a lot of new Omicron-derived lineages are emerging (parental lineages are mostly BA.2, BA.4 and BA.5).

Current situation: characteristics

<u>2. Convergent evolution</u> – the Spike mutations in such emerging lineages mostly involve a group a sites in the RBD (positions: 346, 356, 444, 452, 460, 486, 490).

Current situation: characteristics

• Such mutations have been shown to contribute to confer immune evasion properties.

Current situation: emerging lineages

	pango_lineage	description	major_omicron_ancestor	346	356	444	452	460	486	490
	BN.1	BA.2.75 sub-lineage	BA.2	•	•			•		•
	BN.2	BA.2.75 sub-lineage	BA.2		•			•		•
	XBB	BA.2.10.1.1 x BA.2.75.3.1.1.1	BA.2	•				•	•	•
	XBB.1	XBB sub-lineage	BA.2	•				•	•	•
	CA.1	BA.2.75.2 sub-lineage	BA.2	•			•	•	•	
	BR.2	BA.2.75.4 sub-lineage	BA.2	•			•	•	•	
	BA.2.3.20	BA.2 sub-lineage	BA.2			•	•	•		
$\overline{}$	BQ.1	BA.5.3 sub-lineage	BA.5			•	•	•	•	
$\overline{}$	BQ.1.1	BA.5.3 sub-lineage	BA.5	•		•	•	•	•	
	BU.1	BA.5.2 sub-lineage	BA.5			•	•	•	•	
	BW.1	BA.5.6 sub-lineage	BA.5			•	•	•	•	

BQ.1.1 and XBB

BQ.1.1 (BA.5 subvariant)

- Substitutions on top of BA.5 within the Spike: R346T, K444T, N460K
- 747 sequences from 29 countries
- No severe disease reported so far

XBB (BA.2.10.1 and BA.2.75 recombinant)

- Substitutions on top of BA.2 within the Spike: V83A, Y144-, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, V445P, G446S, N460K, F486S, F490S
- 827 sequences from 26 countries (as of 17 Oct 22)
- No severe disease reported so far

Likely responsible for the recent increase in cases observed in Singapore.

Emerging lineages: neutralization data

Emergining lineages: Ab

COV2-2196+COV2-2130 (Evusheld - tixagevimab and cilgavimab)

LY-CoV1404 (bebtelovimab) SA55+SA58 is a pair of broad NAbs isolated from vaccinated SARS convalescents

							<u> </u>										
Pango	REGN	REGN	REGN10933	COV2-	COV2-	COV2-	BRII-	BRII-	BRII-	S309 DXP- LY-CoV		SA58	SA55	SA55+	Additional RBD		
DAO	10300	500	001	4240	2100	2130+2130	0520	0000	0040	050	004	0.0	5.4	70	7.0	mutations	
BA.Z		590	021	4312	0.3	0.2	8030	9990	0010	652	219	0.9	5.1	1.2	1.0	KAAAD . NIASOD . L ASOM	
BA.2.3.20	121	*	199	15		26	14	•	24	897	181	9.7	20	4.6	7.8	+N460K+R493Q	
BA.2.10.4	*	•	•		289	501	2109	7990	3984	706	6348	1.3	4.3	4.9	5.0	G446S+F486P+R493Q +S494P	
BJ.1	•	·	•	3076	•	5985	7609	•	•	709	166	•	8163	3.7	8.6	D339H+R346T+L368I+ V445P+G446S+V483A +F490V	
XBB	•	•	•	•	•	•	•	•	٠	963	•	•	8805	5.3	9.8	D339H+R346T+L368I+ V445P+G446S+N460K +F486S+F490S+R493O	
BA.2.75	278	*	410	119	352	121	1730	6622	3861	672	5920	2.2	246	4.3	9.6		
BL.1	260		511	93		174	1251		3075	508	7193	2.8	7975	6.3	10	R346T	
BR.1	319	•	679	117		170	1992		3160	564	6689		1616	5.9	9.7	L452R+K444M	
BN.2.1	390		701	59	303	109	4101		8444	6979	8901	1.7	4960	5.7	9.4	K356T+F490S	
BN.1	344		599	70	*	166	3683		7791		6012	3.3	8295	4.9	9.0	R346T+K356T+F490S	
BA.2.75.2										852		3.0	6922	5.9	9.7	R346T+F486S	
BM.1.1	*	*								879	*	2.3	8823	5.2	8.9	R346T+F486S	
BM.1.1.1	*		•						*	956		1.9	8082	4.8	10.5	R346T+F486S+F490S	
BR.2			•							921		2.6	7263	4.7	10.5	R346T+L452R+F486I	
CA.1	*	*	•						*	897		3.2	6927	6.0	11.5	R346T+L452R+F486S	
BA.4/5		520	709		23	40	7124		*	1055	6264	0.8	3.9	5.0	4.5		
BA.4.6.1	*	2338	5402				4763		7809	4456	4634	1.2	50	4.8	9.9	R346T	
BA.5.6.2	*		*				4636		7883	1408	5892	1662	58	5.1	8.9	K444T	
BQ.1	*									1709		1905	44	6.6	9.2	K444T+N460K	
BU.1	*	*			*					1082	*	26	56	5.3	10.5	K444M+N460K	
BQ.1.1						*				5581	*	*	900	5.9	10.3	R346T+K444T+N460K	
-										Ps	eudov	irus IC50	(ng/m		<100	100~1.000 >1.000	

https://www.biorxiv.org/content/10.1101/2022.09.15.507787v3

Emerging lineages: growth advantages

GROWTH RATE ADVANTAGE OF SARS-CoV2 VARIANTS

based on multinomial fit variant ~ ns(date, df=2)+ns(date, df=2):continent+country GISAID & COG-UK data, using data from countries with >=50 level5 or level6+ variants

@TWenseleers 2022-10-13

Lineage proportions in the EU/EEA

SARS-CoV2 LINEAGE FREQUENCIES

Raw GISAID data up to 2022-10-13 plus COG-UK data

@TWenseleers 2022-10-13

Current situation: characteristics

NEW CONFIRMED SARS-CoV2 CASES BY VARIANT

case data accessed via the covidregionaldata package lineage frequencies based on GISAID data up to 2022-10-13 plus COG-UK data and multinomial fit variant ~ ns(date, df=2)+ns(date, df=2):continent+country, selected countries with >=50 level5 or level6+ variant sequences shown

Current situation: characteristics

SARS-CoV2 LINEAGE FREQUENCIES

GISAID data up to 2022-10-13 plus COG-UK data, multinomial fit variant ~ ns(date, df=2)+ns(date, df=2):continent+country, all countries with >=50 level5 or level6+ variant sequences shown

Future scenarios

So far we have always observed a pattern where a new variant sweeps through every few months. Whether that variant will rise to the level of a variant of concern remains an open question.

Future scenarios

SARS-CoV-2 evolutionary path remains unclear.

So far new VOCs have not evolved from the dominant preceding ones, but rather <u>they have emerged from separate lineages</u>.

Future scenarios

Omicron has dominated the variant landscape for longer time than any other previous SARS-CoV-2 variant.

What is a VOC right now? A SARS-CoV-2 variant capable to produce a new wave, or should we should only look at changes in severity?

Future scenarios

Omicron has dominated the variant landscape for longer time than any other previous SARS-CoV-2 variant.

Does this mean that the virus cannot make huge evolutionary jumps anymore? Probably not or at least it is too early to assume that!

Future scenarios

Omicron (World)

In the near future, the testing policies will change.

It could take weeks longer to realize a new variant of concern is afoot due to the changes in surveillance strategies, with limited availability for testing and sequencing.

Thank you!