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Common modeling strategies

Compartmental models - SIR (Diekmann et al., 2012)

Features
Epidemiologically correct models

Mechanistically describe the underlying dynamic
Can model the pandemic all-round

Pitfalls (Ioannidis et al., 2020)
Based on chaotic systems
Rely on hypothetical constants and require accurate data
Bias and misspecification lead to completely different results

At the beggining of the Italian pandemic
most forecasts proved to be completely wrong!
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Data issues

Errors and heterogeneity

Different transmission and data
collection system

Measurement errors and errors in
data entry

Delays in reporting

Temporal misalignment between
indicators

Tracking was highly symptoms driven
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Common modeling strategies

Phenomenological models (Chowell et al., 2016)

Features

Macroscopic models

Draw inference from global statistical properties of the data

Statistical artifacts modeling the observables’ mean

Pitfalls

Entirely ignore the nature of the data
Assume Gaussianity
Use flexible (non-semiparametric) models to extrapolate
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Common conceptual mistakes

Pick a model, validate its performances, but be aware of its limitations!

Never ignore confidence intervals

Good fit does not imply good extrapolation

Predictions at unreasonable time horizons are unreliable
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Italian available data

Data sources: GitHub repository of Italian Protezione Civile

https://github.com/pcm-dpc/COVID-19

Detail: collected and updated daily by the regional Health Systems

Type (main):

Prevalence: current positives, intensive care occupancy (stock)

Yt = Yt−1 + It − Ot

Incidence: cumulative positives, cumulative deceased (flow)

Y c
t = Y c

t−1 + Yt
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Italian available data: incidence

Data sources: GitHub repository of Italian Protezione Civile

https://github.com/pcm-dpc/COVID-19

Detail: collected and updated daily by the regional Health Systems

Type (main):

Prevalence: current positives, intensive care occupancy (stock)

Yt = Yt−1 + It − Ot

Incidence: cumulative positives, cumulative deceased (flow)

Y c
t = Y c

t−1 + Yt
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Cumulative incidence indicators: logistic growth

Logistic curves

S-shaped curves

Widely used to model various growth phenomena (biological,
population, etc.)

Exponential growth followed by a sudden level off

In the epidemic context

Finite elements solutions/approximations to epidemiological ode

Describe the macroscopic behavior of an infection trajectory

Fit globally on the data respecting their epidemic nature
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Richards’ driven GLM

Cumulative counts follow a Logistic Growth

Model the mean as a modified Richards’ curve

E[Y c
t ] = λγ(t) = b · t +

r[
1 + 10h(p−t)

]s , γ = [b, r , h, p, s]>

Innovations follow first differences

E [Yt] = E[Y c
t ]− E[Y c

t−1] = λγ(t)− λγ(t − 1) ≈

≈ d
dt
λγ(t) = λ̃γ(t) = b + fλ(t)
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Richards’ driven GLM

0.0

0.3

0.6

0.9

0 1 2 3 4 5
t

λ t

(a)

0.00

0.02

0.04

0.06

0 1 2 3 4 5
t

λ t~

(b)

Example of a Richards’ curve (a) and its first differences (b).
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Modeling key-points of Alaimo Di Loro et al. (2021)

Consider the effect of covariates through a link function

ηβ (X ) = βX ⇒ gβ(X ) = exp {ηβ (X )}

Additive:

µθ(t ,X) = bβ (X) + r · λ̃γ(t), bβ (X) = gβ(X )

Multiplicative:

µθ(t ,X) = b + rβ (X) · λ̃γ(t), rβ (X) = gβ(X )
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Modeling key-points (Alaimo Di Loro et al., 2021)

Behold to the discrete nature of counts
Negative Binomial

Yt |θ, ν ∼ NegBin(µθ(t), ν)

Given µθ(·) the Yt ’s is stochastically independent from Y c
t−1:

Yt ⊥ Y c
τ ∀ τ < t

Cumulative counts likelihood:

fY c (yc
1 , . . . , y

c
T |y0;θ) =

T∏
t=1

fY c
t
(yc

t |yc
t−1;θ) =

T∏
t=1

fYt (yt |θ)
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Estimation of Alaimo Di Loro et al. (2021)

Optimal parameters θ̂:

Log-Likelihood maximization

Multi-start routine based on Fisher-scoring

Gradient ∇(·) and Hessian H(·) computed analytically

Uncertainty:

Parameters’ uncertainty quantified by the Hessian

Huber Sandwich correction

V
[
θ̂
]

=
(
H(θ̂)

)−1
∇(θ̂)∇(θ̂)>

(
H(θ̂)

)−1

Mean and prediction intervals obtained by bootstrap.
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Model results - Fitting
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Model validation - peak detection
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Estimation of the date of the peak for daily deceased at different steps-before.
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Introducing dependence in Mingione et al. (2021)

Disease mapping

Ygt |µgt ∼ Pois(µgt )

log(µgt ) = log(Eg) + log(mgt ), g = 1, . . . ,G, t = 1, . . . ,T

Eg is an offset accounting for area-specific exposures levels

mgt is a relative measure of the risk of area g at time t

The relative risk

log(mgt ) = log
(
λ̃γg

(t)
)

+ x>gtβ + φgt

λ̃γg
(t) logistic growth temporal trend

x>gtβ a linear predictor based on K covariates

φgt is a random effect for the g-th area at time t
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Introducing dependence in Mingione et al. (2021)

Spatial dependence (Stern and Cressie, 1999)

Neighborhood graph W s.t. wii = 0, wij > 0 iff i ∼ j

CAR proper prior

φt ∼ NG

(
0, σ2 · (D − αW )−1

)

Temporal dependence (Rushworth et al., 2014)

1-st order dependence on the past

AR(1) over the space-vectors {φt}T
t=1

φt |φ1:t−1 ∼ NG

(
ρ · φt−1, σ

2 · (D − αW )−1
)
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Alternative settings of Mingione et al. (2021)

Common factors

log(Eg) = log(residentsg) scaled by a factor of 105

Number of total weekly swabs (standardised) as covariate

“Global VS Individual” growth

One common Richards for all regions λγ(·)
Individual Richards for each region λγg

(·)

Alternative spatial dependence graphs W

W Ind = 0→ spatial independence

W Flow based on proximity flows (direct HV trains, flights, ferries) as in
Della Rossa et al. (2020)

W Geo based on regions’ geographical position
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Estimation in Mingione et al. (2021): Bayesian

Prior setting

log(b), log(r) ∼ N (0, 100) log(h), log(s) ∼ N (0, 1)

p ∼ N (T/2, T/(2 · 1.96)) β ∼ NK (0, 100 · IK )

Implementation using STAN (Carpenter et al., 2017)

Hamiltonian Monte Carlo→ NUTS (Hoffman and Gelman, 2014)

Exact-sparse CAR (Joseph, 2016) for computational efficiency

70%/30% in-sample/out-of-sample split

Codes at https://github.com/minmar94/Covid19-Spatial

StatGroup19 COVID19 models 18 / 31
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Out-of-sample predictions
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Forecasting ability of the best model
Basilicata Lazio
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Black dots in-sample, grey dots out-of-sample, red dots predicted values, red
dashed 95% prediction intervals.
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Italian available data: prevalence

Data sources: GitHub repository of Italian Protezione Civile

https://github.com/pcm-dpc/COVID-19

Detail: collected and updated daily by the regional Health Systems

Type (main):

Prevalence: current positives, intensive care occupancy (stock)

Yt = Yt−1 + It − Ot

Incidence: cumulative positives, cumulative deceased (flow)

Y c
t = Y c

t−1 + Yt
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Nowcasting of ICUs in Farcomeni et al. (2021)

Focus on ICU occupancy

Ygt ∈ {0, . . . ,Bg} occupied beds at time t in area g, with capacity
Bg

Key for planning and allocating health resources

Provide 1 to 5 days-ahead predictions

Use only data from the most recent two weeks

Optimal ensemble of two methods

Validate short-term performances on the run
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Nowcasting of ICUs in Farcomeni et al. (2021)

First model

Generalized Linear Mixed Effect Model (GLMM)

Fit through glmer in the lme4 package (Bates et al., 2007)

Second model

INGARCH (Agosto et al., 2016; Chen and Lee, 2016)

Fit through tsglm in the tscount package (Liboschik et al., 2015)

Model averaging

Convex combination of predictions

Leave-last-out optimal weight
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Second model

GLMM

Ygt ∼ Poisson(λgt )

where
log(λgt/Rg) = βg0 + βg1t + βg2t2

and
(βg0, βg1, βg2) ∼ MVN((β0, β1, β2),Σ)
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Second model

INGARCH

Ygt ∼ Pois (µgt )

log (µgt ) = α0g · log (µg,t−1) + α1g · log (Yg,t−1 + 1) + ηβ(t)

where
ηβ(t) = β0g + β1g t + β2g t2 + β3g t3
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Nowcasting of ICUs in Farcomeni et al. (2021)

First model

INGARCH (Agosto et al., 2016; Chen and Lee, 2016)

Fit through tsglm in the tscount package (Liboschik et al., 2015)

Second model

Generalized Linear Mixed Effect Model

Fit through glmer in the lme4 package (Bates et al., 2007)

Model averaging

Convex combination of predictions

Leave-last-out optimal weight
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Model averaging

Ensemble predictor

Ŷg,t+1 = wgt Ŷ
(INGARCH)
g,t+1 + (1− wgt )Ŷ

(GLMM)
g,t+1

where

wgt ∈ (0, 1) and wgt = 0.5 for t < 15

Prediction intervals are obtained as the weighted average of the
limits of prediction intervals

Jensen’s inequality show that this conservatively guarantees the
nominal level
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Results (Farcomeni et al., 2021)

Predicted (grey) vs observed (black) number of ICU beds during the first outbreak
in Lombardia, Vento and Piemonte. Grey solid lines are 99% confidence intervals.
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Concluding remarks

Conclusion

X Development of a coherent framework for the growth dynamic of
counts

X Inclusion of desirable space-time dependence in the residuals

X Development of a reliable ensemble predictor of ICU occupancy

Work in progress

× Growth model for prevalence indicators using INAR perspective

× Include space-time dependence in the ICU ensemble model

× Include the effects of external policies in the model
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Deviance residuals (Svetliza and Paula, 2003)

Poisson

d̂Poi
t = sgn

(
yt − µθ̂(t)

)
·

√
2yt log

(
yt

µθ̂

)
−
(
yt − µθ̂(t)

)
Negative Binomial

d̂NB
t = sgn

(
yt − µθ̂(t)

)
·

√
2
[
yt log

(
yt

µθ̂(t)

)
− (yt + ν) · log

(
yt + ν

µθ̂(t) + ν

)]
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Pearson residuals

φ̂t =
yt − ŷt

V̂ar [Yt ]
, t = 1, . . . ,T .

where:

V̂arPoi [Yt ] = µθ̂(t), V̂arNB [Yt ] = µθ̂(t) +
µθ̂(t)

2

ν̂
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Model validation
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Figure: Deviance residuals distribution aggregated by day of the week for daily
positives.
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Model validation
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Figure: Residual diagnostic - Daily positives - Negative Binomial.
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Model results

Table: Parameters’ point estimates and 95% confidence intervals for the additive
model on daily positives.

Parameter Point estimate 95% Interval

β0 5.26 (5.18, 5.34)
βwd −0.46 (−0.53,−0.38)

r 224.57× 103 (224.13× 103, 225.01× 103)
h 0.0289 (0.0287, 0.0291)
p −23.26 (−29.64,−16.88)
s 44.42 (−35.67, 124.51)
ν 22.01 (21.35, 22.70)
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Parameters’ estimates

Wave Param. MInd MFlow MGeo

I
α – 0.14 (0.02, 0.21) 0.76 (0.71, 0.81)
ρ 0.89 (0.87, 0.91) 0.88 (0.90, 0.93) 0.86 (0.85, 0.89)
β 0.36 (0.26, 0.44) 0.34 (0.25, 0.42) 0.21 (0.14, 0.29)

II
α – 0.93 (0.92, 0.95) 0.87 (0.85, 0.90)
ρ 0.88 (0.86, 0.90) 0.87 (0.85, 0.89) 0.82 (0.80, 0.85)
β 0.42 (0.38, 0.46) 0.27 (0.24, 0.30) 0.13 (0.09, 0.16)

Comparison of parameters’ estimates for the spatial (α) and temporal (ρ)
auto-correlation, and for the swabs’ effect in the first and the second wave.
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Model selection and validation

Wave Metric MInd MFlow MGeo

I

Coverage 0.98 0.98 0.98
PIW 1535 1178 1144

RMSE 423 184 272
WAIC 2869 2650 2774
LOO 3087 2849 2982

II

Coverage 0.96 0.97 0.92
PIW 33393 4497 4046

RMSE 12841 910 995
WAIC 4112 3820 3971
LOO 4393 4080 4252

Out-of-sample predictive performances for the first and the second wave.
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Parameters’ estimates

Wave Model h s

I
M0 0.62 (0.60, 0.64) 7.8 (6.3, 9.9)
M1 0.62 (0.59, 0.65) 7.9 (5.5, 9.3)
M2 0.61 (0.58, 0.65) 7.8 (5.2, 9.3)

II
M0 3.46 (3.26, 3.63) 0.06 (0.05,0.07)
M1 2.72 (2.33, 3.08) 0.09 (0.07,0.10)
M2 3.50 (3.20, 3.70) 0.06 (0.05, 0.07)

Wave Model b r p

I
M0 0.05 (0.04, 0.06) 23 (20, 27) 2.0 (1.5, 2.5)
M1 0.06 (0.05, 0.07) 20 (17, 22) 2.2 (1.7, 2.8)
M2 0.05 (0.04, 0.06) 26 (21, 31) 2.2 (1.5, 2.9)

II
M0 7 · 10−5 (1 · 10−6, 1 · 10−3) 158 (143, 172) 23.2 (23.1, 23.3)
M1 2 · 10−4 (3 · 10−5, 7 · 10−3) 178 (127, 215) 22.9 (22.8, 23.2)
M2 4 · 10−4 (3 · 10−6, 1 · 10−2) 194 (163, 220) 23.1 (22.9, 23.2)

Table: Parameters’ estimates of the Richards’ curve for the waves I and II.

StatGroup19 COVID19 models 31 / 31



Forecasting comparisons between graphs
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Common Richards’ and latent effects
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Forecasting ability of the best model
Basilicata Lazio
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Black dots in-sample, grey dots out-of-sample, red dots predicted values, red
dashed 95% prediction intervals.
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