StatGroup19 empirical models for the Italian epidemic indicators

P. Alaimo Di Loro M. Mingione

F. Divino A. Farcomeni G. Jona Lasinio G. Lovison A. Maruotti

ECDC Forecast Hub Seminar

October 27, 2021

StatGroup19

Outline

Introduction

- Modeling COVID-19 evolution
- The data

Incidence indicators

- Richards driven GLM model
- Fast estimation with independent components
- Bayesian space-time extension

Prevalence indicators

An ensemble approach for the nowcasting of ICUs

Compartmental models - SIR (Diekmann et al., 2012)

- Features
 - Epidemiologically correct models
 - Mechanistically describe the underlying dynamic
 - Can model the pandemic all-round

Compartmental models - SIR (Diekmann et al., 2012)

- Features
 - Epidemiologically correct models
 - Mechanistically describe the underlying dynamic
 - Can model the pandemic all-round
- Pitfalls (loannidis et al., 2020)
 - Based on chaotic systems
 - Rely on hypothetical constants and require accurate data
 - Bias and misspecification lead to completely different results

Compartmental models - SIR (Diekmann et al., 2012)

- Features
 - Epidemiologically correct models
 - Mechanistically describe the underlying dynamic
 - Can model the pandemic all-round
- Pitfalls (Ioannidis et al., 2020)
 - Based on chaotic systems
 - Rely on hypothetical constants and require accurate data
 - Bias and misspecification lead to completely different results

At the beggining of the Italian pandemic most **forecasts** proved to be completely **wrong**!

Errors and heterogeneity

- Different transmission and data collection system
- Measurement errors and errors in data entry
- Delays in reporting
- Temporal misalignment between indicators
- Tracking was highly symptoms driven

Phenomenological models (Chowell et al., 2016)

- Features
 - Macroscopic models
 - Draw inference from global statistical properties of the data
 - Statistical artifacts modeling the observables' mean

Phenomenological models (Chowell et al., 2016)

Features

- Macroscopic models
- Draw inference from global statistical properties of the data
- Statistical artifacts modeling the observables' mean

Pitfalls

- Entirely ignore the nature of the data
- Assume Gaussianity
- Use flexible (non-semiparametric) models to extrapolate

Common conceptual mistakes

Pick a model, validate its performances, but be aware of its limitations!

- Never ignore confidence intervals
- Good fit does not imply good extrapolation
- Predictions at unreasonable time horizons are unreliable

MY HOBBY: EXTRAPOLATING

Italian available data

StatGroup19

- Data sources: GitHub repository of Italian Protezione Civile https://github.com/pcm-dpc/COVID-19
- Detail: collected and updated daily by the regional Health Systems
- **Type** (main):
 - Prevalence: current positives, intensive care occupancy (stock)

$$Y_t = Y_{t-1} + I_t - O_t$$

• Incidence: cumulative positives, cumulative deceased (flow)

$$Y_t^c = Y_{t-1}^c + \mathbf{Y}_t$$

- Data sources: GitHub repository of Italian Protezione Civile https://github.com/pcm-dpc/COVID-19
- Detail: collected and updated daily by the regional Health Systems
- **Type** (main):
 - Prevalence: current positives, intensive care occupancy (stock)

$$Y_t = Y_{t-1} + I_t - O_t$$

• Incidence: cumulative positives, cumulative deceased (flow)

$$Y_t^c = Y_{t-1}^c + \mathbf{Y}_t$$

Logistic curves

- S-shaped curves
- Widely used to model various **growth** phenomena (biological, population, etc.)
- Exponential growth followed by a sudden level off

Logistic curves

- S-shaped curves
- Widely used to model various **growth** phenomena (biological, population, etc.)
- Exponential growth followed by a sudden level off

In the epidemic context

- Finite elements solutions/approximations to epidemiological ode
- Describe the macroscopic behavior of an infection trajectory
- Fit globally on the data respecting their epidemic nature

Richards' driven GLM

Cumulative counts follow a Logistic Growth

Model the mean as a modified Richards' curve

$$\mathbb{E}[Y_t^c] = \lambda_{\gamma}(t) = b \cdot t + \frac{r}{\left[1 + 10^{h(p-t)}\right]^s}, \quad \gamma = [b, r, h, p, s]^{\top}$$

Cumulative counts follow a Logistic Growth

• Model the mean as a modified Richards' curve

$$\mathbb{E}[Y^c_t] = \lambda_{\gamma}(t) = b \cdot t + rac{r}{\left[1 + 10^{h(p-t)}
ight]^s}, \quad \gamma = [b, r, h, p, s]^ op$$

Innovations follow first differences

$$\mathbb{E}\left[\mathbf{Y}_{\mathbf{t}}\right] = \mathbb{E}[Y_{t}^{c}] - \mathbb{E}[Y_{t-1}^{c}] = \lambda_{\gamma}(t) - \lambda_{\gamma}(t-1) \approx$$
$$\approx \frac{d}{dt}\lambda_{\gamma}(t) = \widetilde{\lambda}_{\gamma}(\mathbf{t}) = \mathbf{b} + \mathbf{f}_{\lambda}(\mathbf{t})$$

Richards' driven GLM

Example of a Richards' curve (a) and its first differences (b).

Modeling key-points of Alaimo Di Loro et al. (2021)

Modeling key-points of Alaimo Di Loro et al. (2021)

Consider the effect of covariates through a link function

$$\eta_{\boldsymbol{eta}}\left(\boldsymbol{X}
ight)=oldsymbol{eta}\boldsymbol{X} \quad \Rightarrow \quad g_{\boldsymbol{eta}}\left(\boldsymbol{X}
ight)=\exp\left\{\eta_{\boldsymbol{eta}}\left(\boldsymbol{X}
ight)
ight\}$$

Additive:

$$\mu_{\boldsymbol{\theta}}(t, \mathbf{X}) = b_{\boldsymbol{\beta}}(\mathbf{X}) + r \cdot \widetilde{\lambda}_{\boldsymbol{\gamma}}(t), \quad b_{\boldsymbol{\beta}}(\mathbf{X}) = g_{\boldsymbol{\beta}}(\mathbf{X})$$

Multiplicative:

$$\mu_{\boldsymbol{\theta}}(t, \mathbf{X}) = b + r_{\boldsymbol{\beta}}(\mathbf{X}) \cdot \widetilde{\lambda}_{\boldsymbol{\gamma}}(t), \quad r_{\boldsymbol{\beta}}(\mathbf{X}) = g_{\boldsymbol{\beta}}(\mathbf{X})$$

Modeling key-points (Alaimo Di Loro et al., 2021)

Behold to the discrete nature of counts
 Negative Binomial

 $Y_t | oldsymbol{ heta},
u \sim \textit{NegBin}(\mu_{oldsymbol{ heta}}(t), \,
u)$

Modeling key-points (Alaimo Di Loro et al., 2021)

Behold to the discrete nature of counts Negative Binomial

$$Y_t | oldsymbol{ heta},
u \sim \textit{NegBin}(\mu_{oldsymbol{ heta}}(t), \,
u)$$

• Given $\mu_{\theta}(\cdot)$ the Y_t 's is stochastically independent from Y_{t-1}^c :

$$Y_t \perp Y_{\tau}^c \quad \forall \ \tau < t$$

Cumulative counts likelihood:

$$f_{Y^c}(y_1^c,\ldots,y_T^c|y_0;\theta) = \prod_{t=1}^T f_{Y_t^c}(y_t^c|y_{t-1}^c;\theta) = \prod_{t=1}^T f_{Y_t}(y_t|\theta)$$

Estimation of Alaimo Di Loro et al. (2021)

Optimal parameters $\hat{\theta}$:

- Log-Likelihood maximization
- Multi-start routine based on Fisher-scoring
- Gradient $\nabla(\cdot)$ and Hessian $\mathcal{H}(\cdot)$ computed analytically

Estimation of Alaimo Di Loro et al. (2021)

Optimal parameters $\hat{\theta}$:

- Log-Likelihood maximization
- Multi-start routine based on Fisher-scoring
- Gradient $\nabla(\cdot)$ and Hessian $\mathcal{H}(\cdot)$ computed analytically

Uncertainty:

- Parameters' uncertainty quantified by the Hessian
- Huber Sandwich correction

$$\boldsymbol{V}\left[\hat{\boldsymbol{\theta}}\right] = \left(\mathcal{H}(\hat{\boldsymbol{\theta}})\right)^{-1} \nabla(\hat{\boldsymbol{\theta}}) \nabla(\hat{\boldsymbol{\theta}})^{\top} \left(\mathcal{H}(\hat{\boldsymbol{\theta}})\right)^{-1}$$

• Mean and prediction intervals obtained by bootstrap.

Model results - Fitting

Model fitting - Daily positives - Negative Binomial.

Model validation - peak detection

Estimation of the date of the peak for daily deceased at different steps-before

European COVID-19 ForecastHub

Introducing dependence in Mingione et al. (2021)

Introducing dependence in Mingione et al. (2021)

Disease mapping

 $Y_{gt}|\mu_{gt} \sim Pois(\mu_{gt})$ $\log(\mu_{gt}) = \log(E_g) + \log(m_{gt}), \quad g = 1, \dots, G, \quad t = 1, \dots, T$

- *E_g* is an offset accounting for area-specific exposures levels
- m_{gt} is a relative measure of the risk of area g at time t

Disease mapping

 $Y_{gt}|\mu_{gt} \sim Pois(\mu_{gt})$ $\log(\mu_{gt}) = \log(E_g) + \log(m_{gt}), \quad g = 1, \dots, G, \quad t = 1, \dots, T$

- *E_g* is an offset accounting for area-specific exposures levels
- *m_{gt}* is a relative measure of the risk of area *g* at time *t*

The relative risk

$$\log(m_{gt}) = \log\left(\widetilde{\lambda}_{\gamma_g}(t)\right) + \mathbf{x}_{gt}^{\top}\boldsymbol{\beta} + \phi_{gt}$$

- $\tilde{\lambda}_{\gamma_a}(t)$ logistic growth temporal trend
- $\mathbf{x}_{gt}^{\top} \boldsymbol{\beta}$ a linear predictor based on *K* covariates
- ϕ_{gt} is a random effect for the g-th area at time t

Introducing dependence in Mingione et al. (2021)

Spatial dependence (Stern and Cressie, 1999)

- Neighborhood graph \boldsymbol{W} s.t. $w_{ii} = 0$, $w_{ij} > 0$ iff $i \sim j$
- CAR proper prior

$$\phi_t \sim \mathcal{N}_G\left(\mathbf{0}, \, \sigma^2 \cdot (\mathbf{D} - \alpha \, \mathbf{W})^{-1}\right)$$

Introducing dependence in Mingione et al. (2021)

Spatial dependence (Stern and Cressie, 1999)

- Neighborhood graph W s.t. $w_{ii} = 0$, $w_{ij} > 0$ iff $i \sim j$
- CAR proper prior

$$\phi_t \sim \mathcal{N}_G\left(\mathbf{0}, \, \sigma^2 \cdot (\mathbf{D} - \alpha \, \mathbf{W})^{-1}\right)$$

Temporal dependence (Rushworth et al., 2014)

- 1-st order dependence on the past
- **AR(1)** over the space-vectors $\{\phi_t\}_{t=1}^T$

$$\phi_t | \phi_{1:t-1} \sim \mathcal{N}_G \left(\rho \cdot \phi_{t-1}, \sigma^2 \cdot (\boldsymbol{D} - \alpha \boldsymbol{W})^{-1} \right)$$

Common factors

- $\log(E_g) = \log(residents_g)$ scaled by a factor of 10^5
- Number of total weekly swabs (standardised) as covariate

Common factors

- $\log(E_g) = \log(residents_g)$ scaled by a factor of 10^5
- Number of total weekly swabs (standardised) as covariate

"Global VS Individual" growth

- One common Richards for all regions $\lambda_{\gamma}(\cdot)$
- Individual Richards for each region $\lambda_{\gamma_a}(\cdot)$

Common factors

- $\log(E_g) = \log(residents_g)$ scaled by a factor of 10^5
- Number of total weekly swabs (standardised) as covariate

"Global VS Individual" growth

- One common Richards for all regions $\lambda_{\gamma}(\cdot)$
- Individual Richards for each region $\lambda_{\gamma_a}(\cdot)$

Alternative spatial dependence graphs W

- $W_{Ind} = 0 \rightarrow$ spatial independence
- *W*_{Flow} based on proximity flows (direct HV trains, flights, ferries) as in Della Rossa et al. (2020)
- W_{Geo} based on regions' geographical position

Prior setting

$$\begin{split} &\log(b), \log(r) \sim \mathcal{N}(0, 100) \quad \log(h), \log(s) \sim \mathcal{N}(0, 1) \\ &\rho \sim \mathcal{N}\left(T/2, \ T/(2 \cdot 1.96)\right) \quad \beta \sim \mathcal{N}_{\mathcal{K}}\left(\mathbf{0}, 100 \cdot \mathbf{I}_{\mathcal{K}}\right) \end{split}$$

Prior setting

$$\begin{split} &\log(b), \log(r) \sim \mathcal{N}(0, 100) \quad \log(h), \log(s) \sim \mathcal{N}(0, 1) \\ &\rho \sim \mathcal{N}\left(T/2, \ T/(2 \cdot 1.96)\right) \quad \beta \sim \mathcal{N}_{\mathcal{K}}\left(\mathbf{0}, 100 \cdot \mathbf{I}_{\mathcal{K}}\right) \end{split}$$

Implementation using STAN (Carpenter et al., 2017)

- Hamiltonian Monte Carlo \rightarrow **NUTS** (Hoffman and Gelman, 2014)
- Exact-sparse CAR (Joseph, 2016) for computational efficiency
- 70%/30% in-sample/out-of-sample split

Codes at https://github.com/minmar94/Covid19-Spatial

Out-of-sample predictions

Forecasting ability of the best model

Black dots in-sample, grey dots out-of-sample, red dots predicted values, red dashed 95% prediction intervals.

StatGroup19

ForecastH

Italian available data: prevalence

- Data sources: GitHub repository of Italian Protezione Civile https://github.com/pcm-dpc/COVID-19
- Detail: collected and updated daily by the regional Health Systems
- **Type** (main):
 - Prevalence: current positives, intensive care occupancy (stock)

$$\mathbf{Y}_{\mathbf{t}} = Y_{t-1} + I_t - O_t$$

Incidence: cumulative positives, cumulative deceased (flow)

$$Y_t^c = Y_{t-1}^c + Y_t$$

Focus on ICU occupancy

- $Y_{gt} \in \{0, \dots, B_g\}$ occupied beds at time *t* in area *g*, with capacity B_g
- Key for planning and allocating health resources

Provide 1 to 5 days-ahead predictions

- Use only data from the most recent two weeks
- Optimal ensemble of two methods
- Validate short-term performances on the run

Nowcasting of ICUs in Farcomeni et al. (2021)

First model

- Generalized Linear Mixed Effect Model (GLMM)
- Fit through glmer in the lme4 package (Bates et al., 2007)

GLMM

 $Y_{gt} \sim Poisson(\lambda_{gt})$

where

$$\log(\lambda_{gt}/R_g) = \beta_{g0} + \beta_{g1}t + \beta_{g2}t^2$$

and

 $(\beta_{g0}, \beta_{g1}, \beta_{g2}) \sim MVN((\beta_0, \beta_1, \beta_2), \Sigma)$

Nowcasting of ICUs in Farcomeni et al. (2021)

First model

- Generalized Linear Mixed Effect Model (GLMM)
- Fit through glmer in the lme4 package (Bates et al., 2007)

Second model

- **INGARCH** (Agosto et al., 2016; Chen and Lee, 2016)
- Fit through tsglm in the tscount package (Liboschik et al., 2015)

INGARCH

$$\begin{aligned} \mathbf{Y}_{gt} &\sim \textit{Pois}\left(\mu_{gt}\right) \\ \log\left(\mu_{gt}\right) &= \alpha_{0g} \cdot \log\left(\mu_{g,t-1}\right) + \alpha_{1g} \cdot \log\left(\mathbf{Y}_{g,t-1} + 1\right) + \eta_{\beta}(t) \end{aligned}$$

where

$$\eta_{\beta}(t) = \beta_{0g} + \beta_{1g}t + \beta_{2g}t^2 + \beta_{3g}t^3$$

First model

- **INGARCH** (Agosto et al., 2016; Chen and Lee, 2016)
- Fit through tsglm in the tscount package (Liboschik et al., 2015)

Second model

- Generalized Linear Mixed Effect Model
- Fit through glmer in the lme4 package (Bates et al., 2007)

Model averaging

- Convex combination of predictions
- Leave-last-out optimal weight

Ensemble predictor

$$\hat{Y}_{g,t+1} = \textit{w}_{gt} \, \hat{Y}_{g,t+1}^{(\textit{INGARCH})} + (1 - \textit{w}_{gt}) \, \hat{Y}_{g,t+1}^{(\textit{GLMM})}$$

where

- $w_{gt} \in (0, 1)$ and $w_{gt} = 0.5$ for t < 15
- Prediction intervals are obtained as the weighted average of the limits of prediction intervals
- Jensen's inequality show that this conservatively guarantees the nominal level

Results (Farcomeni et al., 2021)

Predicted (grey) vs observed (black) number of ICU beds during the first outbreak in Lombardia, Vento and Piemonte. Grey solid lines are 99% confidence intervals.

Results

Median absolute prediction error by region for ICU occupancy since March 12, 2020.

Concluding remarks

StatGroup19

Conclusion

- $\checkmark\,$ Development of a coherent framework for the growth dynamic of counts
- \checkmark Inclusion of desirable space-time dependence in the residuals
- ✓ Development of a reliable ensemble predictor of ICU occupancy

Conclusion

- $\checkmark\,$ Development of a coherent framework for the growth dynamic of counts
- $\checkmark\,$ Inclusion of desirable space-time dependence in the residuals
- ✓ Development of a reliable ensemble predictor of ICU occupancy

Work in progress

- × Growth model for prevalence indicators using INAR perspective
- × Include space-time dependence in the ICU ensemble model
- × Include the effects of external policies in the model

Main references

- A. Agosto, G. Cavaliere, D. Kristensen, and A. Rahbek. Modeling corporate defaults: Poisson autoregressions with exogenous covariates (parx). Journal of Empirical Finance, 38:640–663, 2016.
- P. Alaimo Di Loro, F. Divino, A. Farcomeni, G. Jona Lasinio, G. Lovison, A. Maruotti, and M. Mingione. Nowcasting covid-19 incidence indicators during the italian first outbreak. *Statistics in Medicine*, 40(16):3843–3864, 2021.
- D. Bates, D. Sarkar, M. D. Bates, and L. Matrix. The Ime4 package. R package version, 2(1):74, 2007.
- B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: a probabilistic programming language. *Grantee Submission*, 76(1):1–32, 2017.
- C. W. Chen and S. Lee. Generalized poisson autoregressive models for time series of counts. Computational Statistics & Data Analysis, 99:51–67, 2016.
- G. Chowell, D. Hincapie-Palacio, J. Ospina, B. Pell, A. Tariq, S. Dahal, S. Moghadas, A. Smirnova, L. Simonsen, and C. Viboud. Using phenomenological models to characterize transmissibility and forecast patterns and final burden of zika epidemics. *PLoS currents*, 8, 2016.
- F. Della Rossa, D. Salzano, A. Di Meglio, F. De Lellis, M. Coraggio, C. Calabrese, A. Guarino, R. Cardona-Rivera, P. De Lellis, D. Liuzza, et al. A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic. *Nature communications*, 11(1):1–9, 2020.
- O. Diekmann, H. Heesterbeek, and T. Britton. Mathematical tools for understanding infectious disease dynamics, volume 7. Princeton University Press, 2012.
- A. Farcomeni, A. Maruotti, F. Divino, G. Jona-Lasinio, and G. Lovison. An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in italian regions. *Biometrical Journal*, 63:503–513, 2021.
- M. D. Hoffman and A. Gelman. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.
- J. P. Ioannidis, S. Cripps, and M. A. Tanner. Forecasting for COVID-19 has failed. International Journal of Forecasting, 2020. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2020.08.004. URL http://www.sciencedirect.com/science/article/pii/S0169207020301199.
- M. Joseph. Exact sparse CAR models in Stan, 2016. URL http://mc-stan. org/users/documentation/case-studies/mbjoseph-CARStan. html, 2016.
- T. Liboschik, K. Fokianos, and R. Fried. tscount: An R package for analysis of count time series following generalized linear models. Universitätsbibliothek Dortmund Dortmund, Germany, 2015.
- M. Mingione, P. Alaimo Di Loro, A. Farcomeni, F. Divino, G. Lovison, G. J. Lasinio, and A. Maruotti. Spatial modelling of covid-9 incident cases using richards' curve: an application to the italian regions. arXiv preprint arXiv:2106.05067, 2021.
- A. Rushworth, D. Lee, and R. Mitchell. A spatio-temporal model for estimating the long-term effects of air pollution on respirator and the spatio-temporal epidemiology, 10:29–38, 2014.
- H. Stern and N. A. Cressie. Inference for extremes in disease mapping. 1999.

THANK YOU FOR YOUR ATTENTION!

THANK YOU FOR YOUR ATTENTION!

Questions?

APPENDIX

StatGroup19

Poisson

$$\hat{d}_t^{\mathsf{Poi}} = \mathsf{sgn}\left(y_t - \mu_{\hat{m{ heta}}}(t)
ight) \cdot \sqrt{2y_t\log\left(rac{y_t}{\mu_{\hat{m{ heta}}}}
ight) - \left(y_t - \mu_{\hat{m{ heta}}}(t)
ight)}$$

Negative Binomial

$$\hat{d}_t^{\text{NB}} = \text{sgn}\left(y_t - \mu_{\hat{\theta}}(t)\right) \cdot \sqrt{2\left[y_t \log\left(\frac{y_t}{\mu_{\hat{\theta}}(t)}\right) - (y_t + \nu) \cdot \log\left(\frac{y_t + \nu}{\mu_{\hat{\theta}}(t) + \nu}\right)\right]}$$

$$\hat{\phi}_t = \frac{\mathbf{y}_t - \hat{\mathbf{y}}_t}{\widehat{\operatorname{Var}}[\mathbf{Y}_t]}, \qquad t = 1, \dots, T.$$

where:

$$\widehat{\operatorname{Var}}_{\operatorname{Poi}}[Y_t] = \mu_{\hat{\theta}}(t), \qquad \widehat{\operatorname{Var}}_{\operatorname{NB}}[Y_t] = \mu_{\hat{\theta}}(t) + \frac{\mu_{\hat{\theta}}(t)^2}{\hat{\nu}}$$

Model validation

Figure: Deviance residuals distribution aggregated by day of the week for *daily positives*.

orecast

Model validation

StatGroup19

Table: Parameters' point estimates and 95% confidence intervals for the additive model on daily positives.

Parameter	Point estimate	95% Interval	
β_0	5.26	(5.18, 5.34)	
$eta_{w\!d}$	-0.46	(-0.53, -0.38)	
r	$224.57 imes10^3$	$(224.13 imes 10^3, 225.01 imes 10^3)$	
h	0.0289	(0.0287, 0.0291)	
p	-23.26	(-29.64, -16.88)	
S	44.42	(-35.67, 124.51)	
ν	22.01	(21.35, 22.70)	

Wave	Param.	M _{Ind}	M _{Flow}	M _{Geo}
I	$\begin{vmatrix} \alpha \\ \rho \\ \beta \end{vmatrix}$	 0.89 (0.87, 0.91) 0.36 (0.26, 0.44)	0.14 (0.02, 0.21) 0.88 (0.90, 0.93) 0.34 (0.25, 0.42)	0.76 (0.71, 0.81) 0.86 (0.85, 0.89) 0.21 (0.14, 0.29)
II	$\begin{vmatrix} \alpha \\ \rho \\ \beta \end{vmatrix}$	 0.88 (0.86, 0.90) 0.42 (0.38, 0.46)	0.93 (0.92, 0.95) 0.87 (0.85, 0.89) 0.27 (0.24, 0.30)	0.87 (0.85, 0.90) 0.82 (0.80, 0.85) 0.13 (0.09, 0.16)

Comparison of parameters' estimates for the spatial (α) and temporal (ρ) auto-correlation, and for the swabs' effect in the first and the second wave.

Model selection and validation

Wave	Metric	M _{Ind}	M _{Flow}	M _{Geo}
	Coverage	0.98	0.98	0.98
	PIW	1535	1178	1144
	RMSE	423	184	272
	WAIC	2869	2650	2774
	LOO	3087	2849	2982
	Coverage	0.96	0.97	0.92
	PIW	33393	4497	4046
	RMSE	12841	910	995
	WAIC	4112	3820	3971
	LOO	4393	4080	4252

Out-of-sample predictive performances for the first and the second wave.

Parameters' estimates

Wave	Model	h	S
I	M ₀ M ₁ M ₂	0.62 (0.60, 0.64) 0.62 (0.59, 0.65) 0.61 (0.58, 0.65)	7.8 (6.3, 9.9) 7.9 (5.5, 9.3) 7.8 (5.2, 9.3)
II	M ₀ M ₁ M ₂	3.46 (3.26, 3.63) 2.72 (2.33, 3.08) 3.50 (3.20, 3.70)	$\begin{array}{c} 0.06 \; (0.05, 0.07) \\ 0.09 \; (0.07, 0.10) \\ 0.06 \; (0.05, 0.07) \end{array}$

Wave Mo	odel	b	r	p
1	M ₀ M ₁ M ₂	0.05 (0.04, 0.06) 0.06 (0.05, 0.07) 0.05 (0.04, 0.06)	23 (20, 27) 20 (17, 22) 26 (21, 31)	2.0 (1.5, 2.5) 2.2 (1.7, 2.8) 2.2 (1.5, 2.9)
II /	M ₀ M ₁ M ₂	$ \begin{vmatrix} 7 \cdot 10^{-5} & (1 \cdot 10^{-6}, 1 \cdot 10^{-3}) \\ 2 \cdot 10^{-4} & (3 \cdot 10^{-5}, 7 \cdot 10^{-3}) \\ 4 \cdot 10^{-4} & (3 \cdot 10^{-6}, 1 \cdot 10^{-2}) \end{vmatrix} $	158 (143, 172) 178 (127, 215) 194 (163, 220)	23.2 (23.1, 23.3) 22.9 (22.8, 23.2) 23.1 (22.9, 23.2)
				K.Q.2

Table: Parameters' estimates of the Richards' curve for the waves I and

Forecasting comparisons between graphs

📫 W0 🖨 W1 🗰 W2

Prediction error (on the log scale) at different steps ahead, for each specification of W and for each wave.

orecast

Common Richards' and latent effects

Forecasting ability of the best model

Black dots in-sample, grey dots out-of-sample, red dots predicted values, red dashed 95% prediction intervals.

StatGroup19

ForecastH