# The epiMOX-SUIHTER model

# Nicola Parolini

Laboratorio MOX Dipartimento di Matematica Politecnico di Milano

#### **European COVID Forecast HUB**

October 20<sup>th</sup>, 2021

### Contribution of the epiMOX work group

- design and calibration of a new compartmental model for COVID-19
- analysis and visualization of epidemiological data (epiMOX dashboard)
- enable what-if and forecast scenarios

#### Wishlist for the new model:

- set of compartments matching the available data
- capability to account for the infected but undetected individuals
- parameters depending on different phases of the epidemic due to different NPI (Non-Pharmaceutical Interventions), improvement of therapies and vaccination
- possibility to describe different NPIs scenarios
- forecast capability for critical indicators

# The SUIHTER epidemiological model

• a new compartmental model designed around the available epidemiological data daily supplied by DPC (Dipartimento della Protezione Civile)

S

• parameters:  $\beta_U$  (transmission rate),  $\delta$  (detection rate),  $\omega_{I,H}$  (worsening rates),  $\theta_T$  (improving rate),  $\rho_{U,I,H}$  (recovery rates),  $\gamma_{I,H,T}$  (mortality rates)

SUSCEPTIBLES UNDETECTED

ISOLATED  $\dot{I}(t) = \delta U(t) - (\rho_I + \omega_I + \gamma_I) I(t),$ 

 $\dot{S}(t) = -S(t) \frac{\beta_U U(t)}{N},$ 

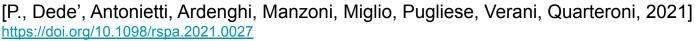
HOSPITALIZED  $\dot{H}(t) = \omega_I I(t) - (\rho_H + \omega_H + \gamma_H) H(t) + \theta_T T(t),$ 

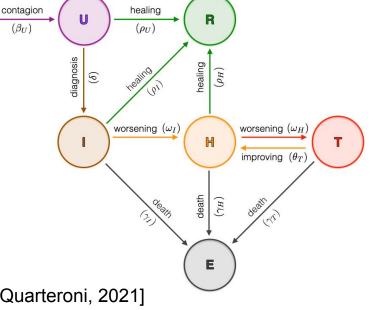
 $\dot{U}(t) = S(t) \frac{\beta_U U(t)}{N} - (\delta + \rho_U) U(t),$ 

THREATENED  $\dot{T}(t) = \omega_H H(t) - (\theta_T + \gamma_T) T(t),$ 

EXTINCT  $\dot{E}(t) = \gamma_I I(t) + \gamma_H H(t) + \gamma_T T(t)$ ,

**RECOVERED**  $\dot{R}(t) = \rho_U U(t) + \rho_I I(t) + \rho_H H(t)$ 





epiMOX

#### Model parameters

- Some parameters are assumed to be **constant in time**: the detection rate  $\delta$ , the improving rate  $\theta_{\tau}$  the isolated mortality rate  $\gamma_{I}$  and the recovery rates  $\rho_{II}$ ,  $\rho_{I}$ ,  $\rho_{H}$
- The others  $(\beta_U, \omega_H, \omega_T, \gamma_T)$  are piecewise constant on time, to better fit the phases corresponding to specific critical events.
- e.g., for the second epidemic wave (Fall 2020), starting on August 20, 2020, we considered 10 phases associated to introduction of NPIs.

Two-step calibration procedure based on:

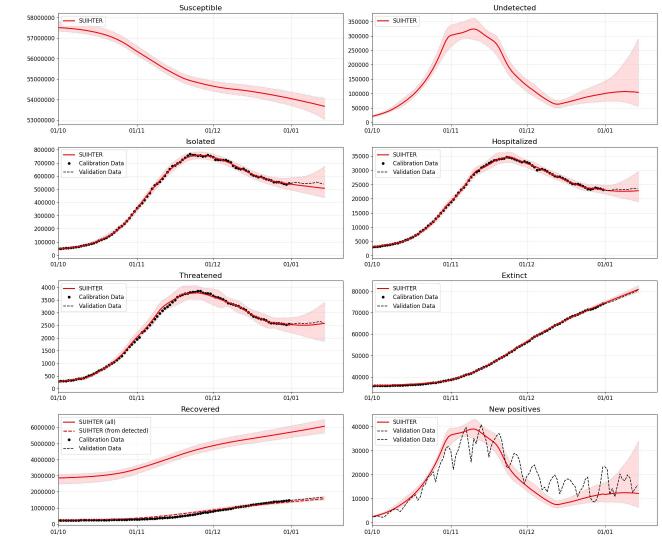
1. **least-square procedure** to evaluate the parameters, best fitting the measured time-series of the **lsolated ad home**, **Hospitalized**, **Threatened** and **Expired** compartments

$$\mathcal{J}(\mathbf{p}) := \sum_{j=1}^{n_{me}} \sum_{k=\{I,H,T,E,R_D\}} \alpha_k(t_j) \|\mathbf{Y}_k(t_j,\mathbf{p}) - \hat{\mathbf{Y}}_k(t_j)\|_2^2$$

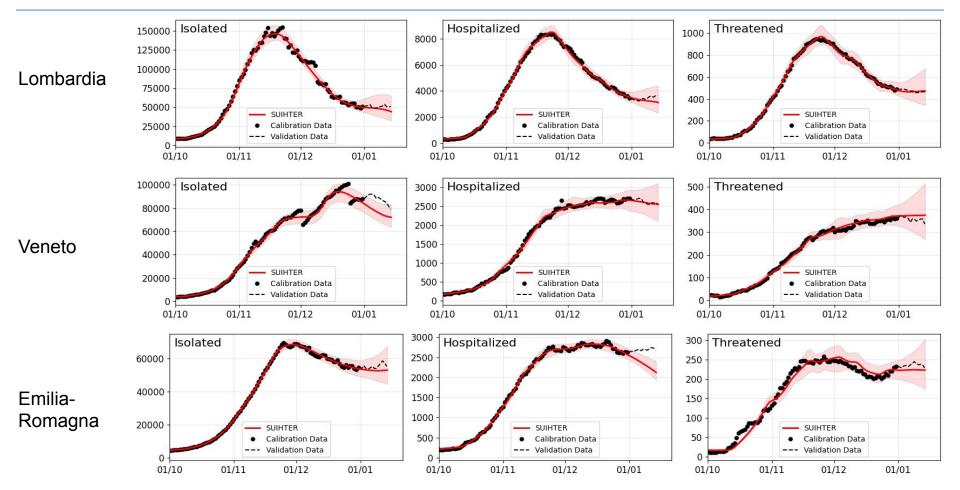
2. **Monte-Carlo Markov Chain (MCMC)** procedure to compute the posterior probability distribution of the parameters starting from prior distributions centered on the least-square estimates

# Simulation of the second outbreak in Italy

- good fitting with the data
- capability of the model to reconstruct non calibrated time series (e.g. New positives and Recovered)
- accurate short term forecast



#### Simulation of the second outbreak - regional level



## Model initialization

- The model can be calibrated starting from an arbitrary time instant  $t_{o}$
- Reinitialization strategy for compartments not covered by data is required, namely U and R (data on recovered only include recovered that were previously detected)
- The initialization is based on the Infection Fatality Ratio (IFR=1.2%, assumed constant) and a time-dependent Case Fatality Ratio CFR(t) over a moving time window [t-Δt/2, t+Δt/2] with Δt=28 days

$${
m IFR} = rac{E}{R+E} \qquad \qquad {
m CFR}(t) = rac{\Delta E(t)}{\Delta R_D(t) + \Delta E(t)} ,$$

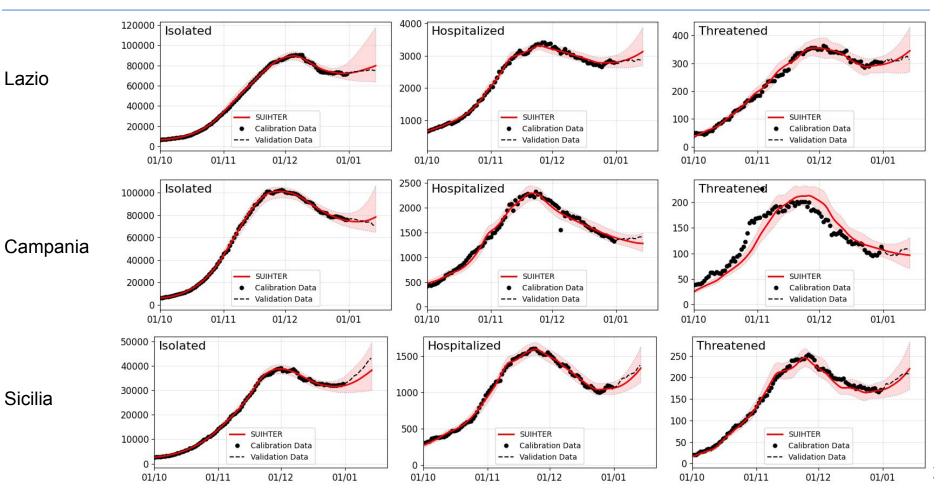
• The Undetected and Recovered compartments at a given time can be estimated as

$$R(t) = \left(rac{1}{ ext{IFR}}-1
ight) \hspace{1.5cm} E(t) \hspace{1.5cm} U(t) = \left(rac{ ext{CFR}(t+d)}{ ext{IFR}}-1
ight) \hspace{1.5cm} (I(t)+H(t)+T(t))$$

• Total Recovered was estimated to around 4.8% of the population at August 20, 2020, in line with others estimates [1,2]

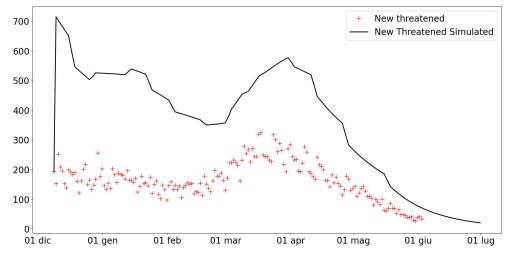
[1] Marziano et al. *Retrospective analysis of the Italian exit strategy from {COVID}-19 lockdown*, PNAS, 2021 [2] O'Driscoll et al, *Age-specific mortality and immunity patterns of SARS-CoV-2 infection in 45 countries*, Nature, 2021

#### Simulation of the second outbreak - regional level



### **Model limitations**

- Reducing the number of time dependent parameters would improve the efficiency and robustness of the calibration process
- When additional data became available (e.g. new admission in ICUs), we had the evidence that some fluxes were not accurately estimated by the model
- Not always easy to identify the temporal phases with changes of environmental conditions and NPIs



### New data improve the model\

- Reduction of free model parameters by exploiting new data that were made available
- Worsening rates  $\omega_{I}$  and  $\omega_{H}$  obtained from new DPC and ISS data

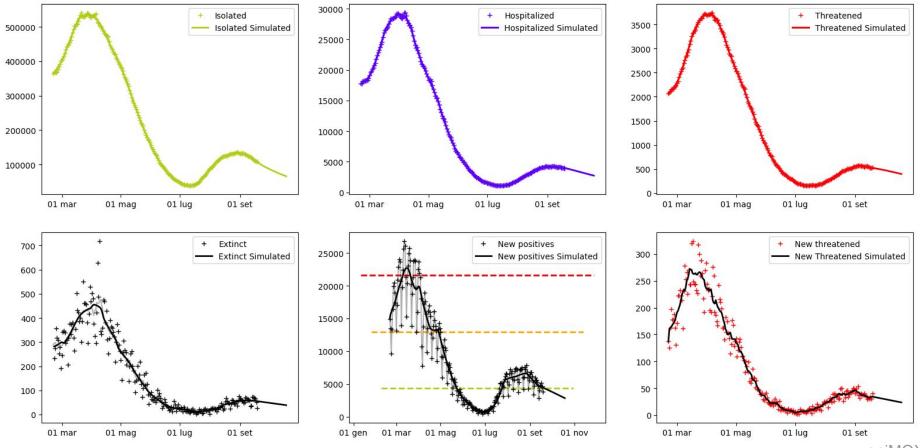
$$\omega_I(t) \approx \frac{nH_{ISS}(t)}{I(t)}$$
  $\omega_H(t) \approx \frac{nT(t)}{H(t)}$ 

• Detection rate  $\delta$  estimated from data based on IFR and time-dependent CFR(t)

$$\delta(t) = \frac{1}{t_d} p_d(t) = \frac{1}{t_d} \frac{IFR}{CFR(t+d)}$$

- Improved match on some compartment fluxes
- Temporal phases are now fixed a-priori with a uniform time duration (typically 2 weeks)

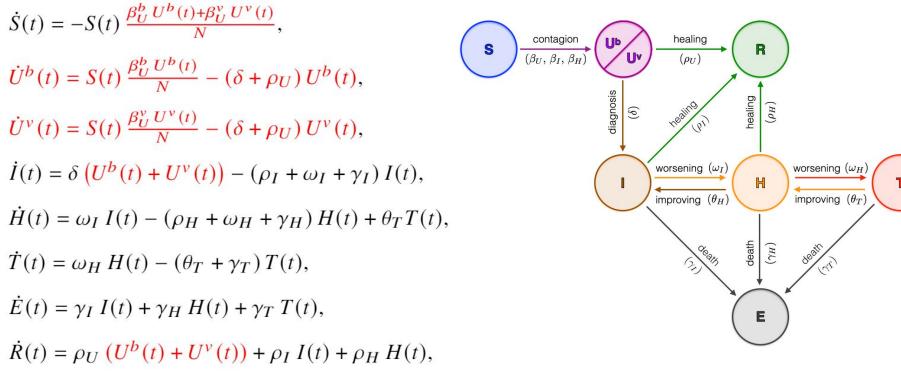
#### New data improve the model



epiMOX

## Accounting for virus variants

The SUIHTER model was extended to include the appearance of new variants and their increased prevalence (Alfa has 37% higher transmission rate than wild-type virus, Delta has 50% higher transmission rate than Alfa)



## Accounting for virus variants

- Model adopted in February-March with Alfa variant and in May-June with Delta variant
- Variant model used for prediction from time  $t_0$ , with an initialization based on variant prevalence  $(p_v)$  data from ISS

$$U^{b}(t_{0}) = (1 - p_{v})U(t_{0}) \qquad \qquad U^{v}(t_{0}) = p_{v}U(t_{0})$$

• Calibrated transmission rate  $\beta_U$  can be computed as a linear combination of the base transmission rate and the increased variant transmission rates ( $f_v = 1.37$  for Alfa variant and  $f_v = 1.5$  for Delta variant)

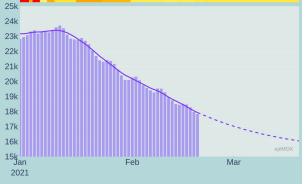
$$\beta_U(t_0) = \beta_U^b(1 - p_v(t_0)) + \beta_U^v p_v(t_0) = \beta_U^b(1 - p_v(t_0)) + \beta_U^b f_v p_v(t_0)$$

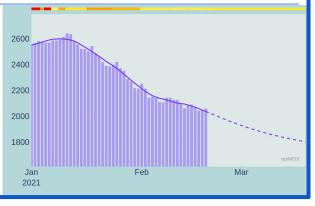
• Base and variant transmission rates can than be computed as:

$$\beta_U^b = \frac{\beta_U(t_0)}{1 + (f_v - 1)p_v(t_0)}, \qquad \beta_U^v = f_v \beta_U^b$$

#### Model without Alfa variant







Isolated

650k

600k

550k

500k

450k

400k

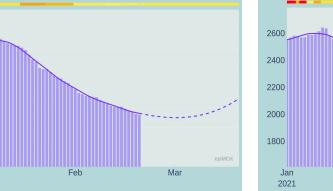
350k

300k

250k Jan

2021







#### Hosted in ICUs



еріМОХ

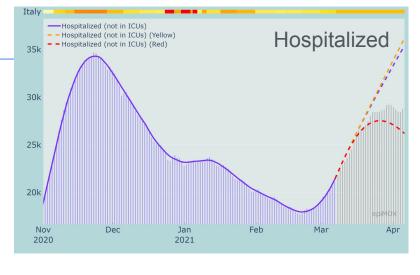
Model with Alfa variant

### **Forecast scenarios**

- different forecast scenarios can be explored accounting for different level of restrictions
- the different restriction regimes can be associated to a restriction coefficient T, used to model the transmission rate

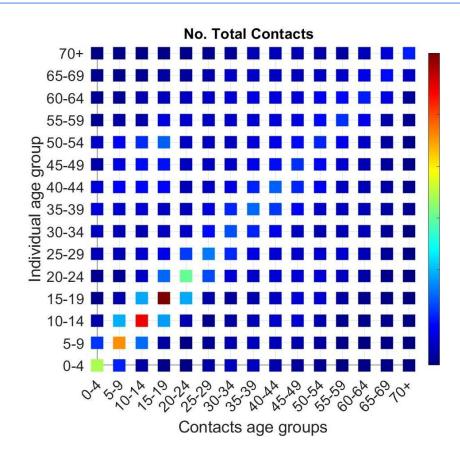
 $\beta(t) = \beta(\text{today}) \frac{\tau(t)}{\tau(\text{today})}$ 

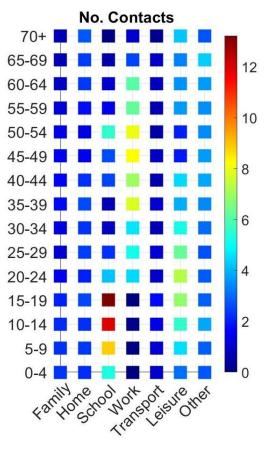
- restriction coefficient T can be estimated based on the change on contacts matrices associated to different NPIs
- Forecast performed on March 7th: without strict NPIs (actually adopted on March 14th), the epidemic curve would not have been controlled





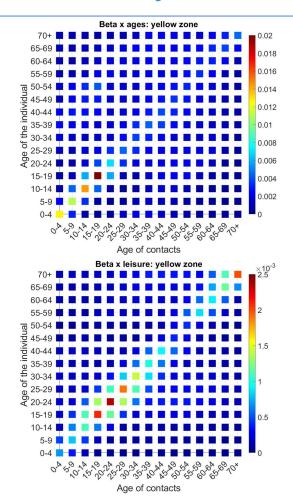
#### Contact matrices (POLYMOD + ISTAT)

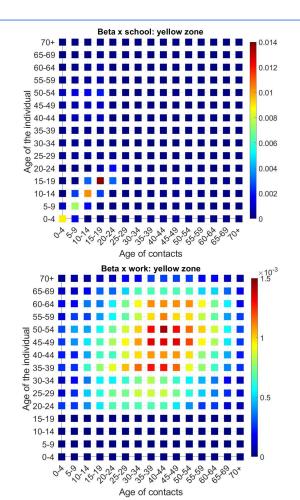




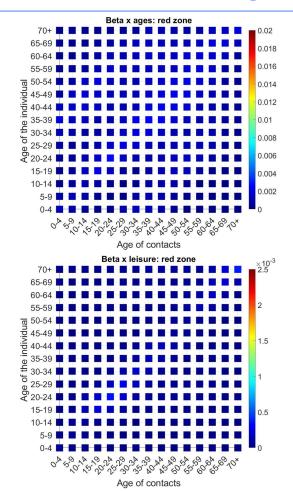
Mossong et al, Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases, Plos Medicine, 2008 epiMOX

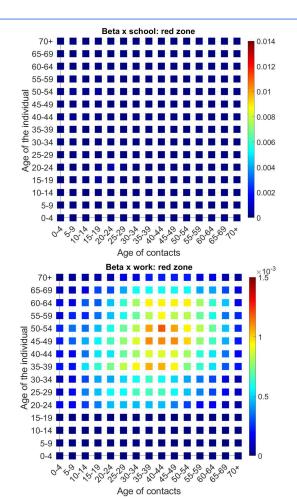
#### Effect of NPIs - yellow regions





#### Effect of NPIs - red regions

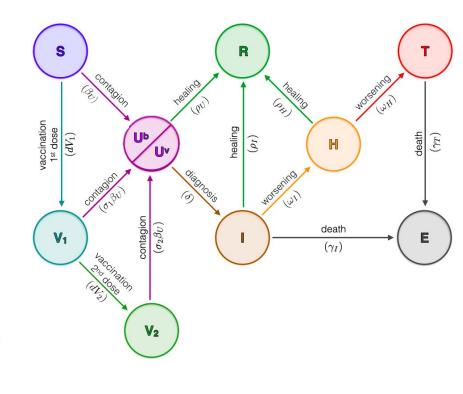




#### Including the vaccination campaign

Vaccines act through a reduced transmissibility after first and second dose and reduced worsening rates

 $\dot{S}(t) = -S(t) \,\frac{\beta_U^b \, U^b(t) + \beta_U^v \, U^v(t)}{N} - dV_1 \, \frac{S}{S+B_{v_1}},$  $\dot{U}^{b}(t) = \left(S(t) + \sigma_{1}^{b} V_{1} + \sigma_{2}^{b} V_{2}\right) \frac{\beta_{U}^{b} U^{b}(t)}{N} - \left(\delta + \rho_{U}\right) U^{b}(t),$  $\dot{U}^{\nu}(t) = \left(S(t) + \frac{\sigma_{1}^{\nu}}{\sigma_{1}}V_{1} + \frac{\sigma_{2}^{\nu}}{\sigma_{2}}V_{2}\right) \frac{\beta_{U}^{\nu}U^{\nu}(t)}{N} - \left(\delta + \rho_{U}\right)U^{\nu}(t),$  $\dot{I}(t) = \delta \left( U^b(t) + U^v(t) \right) - \left( \rho_I + \bar{\omega}_I + \bar{\gamma}_I \right) I(t),$  $\dot{H}(t) = \bar{\omega}_{I} I(t) - (\rho_{H} + \bar{\omega}_{H} + \gamma_{H}) H(t),$  $\dot{T}(t) = \bar{\omega}_{H} H(t) - (\theta_{T} + \gamma_{T}) T(t),$  $\dot{E}(t) = \bar{\gamma}_{I} I(t) + \gamma_{H} H(t) + \gamma_{T} T(t),$  $\dot{R}(t) = \rho_{II} \left( U^{b}(t) + U^{v}(t) \right) + \rho_{I} I(t) + \rho_{H} H(t),$  $\dot{V}_{1}(t) = dV_{1} \frac{S}{S+R_{U}} - dV_{2} \frac{S}{S+R_{U}} - \sigma_{1}^{b} V_{1} \frac{\beta_{U}^{b} U^{b}(t)}{N} - \sigma_{1}^{v} V_{1} \frac{\beta_{U}^{v} U^{v}(t)}{N},$  $\dot{V}_{2}(t) = dV_{2} \frac{S}{S+R_{U}} - \frac{\sigma_{2}^{b}}{N} V_{2} \frac{\beta_{U}^{b} U^{b}(t)}{N} - \frac{\sigma_{2}^{v}}{N} V_{2} \frac{\beta_{U}^{v} U^{v}(t)}{N},$ 



### Accounting for vaccines effectiveness

- Vaccinated individuals are infected with a lower probability (-70% after first dose, -88% after second dose) lower transmission rates (σ<sub>1</sub>=0.3, σ<sub>2</sub>=0.12)
- Vaccines reduce probability of hospitalization, ICUs admission and mortality (from [ISS])
  - hospitalization reduction due to first and second dose:  $h_1$ ,  $h_2$
  - $\circ$  ICUs admission reduction due to first and second dose: t<sub>1</sub>, t<sub>2</sub>
  - $\circ$  mortality reduction due to first and second dose: m<sub>1</sub>, m<sub>2</sub>
- Parameters in forecast are rescaled based on the percentages of new cases that were susceptible (S) and vaccinated ( $V_1$  or  $V_2$ ) and normalized at the end of the calibration

$$u_{S}(t) = \frac{S}{S + \sigma_{1}V_{1} + \sigma_{2}V_{2}}$$

$$\bar{\omega}_{I}(t) = \omega_{I}(t_{0})\frac{u_{S}(t) + h_{1}u_{1}(t) + h_{2}u_{2}(t)}{u_{S}(t_{0}) + h_{1}u_{1}(t_{0}) + h_{2}u_{2}(t_{0})}$$

$$\bar{\omega}_{I}(t) = \omega_{I}(t_{0})\frac{u_{S}(t) + t_{1}u_{1}(t) + t_{2}u_{2}(t)}{u_{S}(t_{0}) + t_{1}u_{1}(t_{0}) + t_{2}u_{2}(t_{0})}$$

$$\bar{\omega}_{I}(t) = \omega_{I}(t_{0})\frac{u_{S}(t) + t_{1}u_{1}(t) + t_{2}u_{2}(t_{0})}{u_{S}(t_{0}) + t_{1}u_{1}(t_{0}) + t_{2}u_{2}(t_{0})}$$

$$\bar{\gamma}_{I}(t) = \gamma_{I}(t_{0})\frac{u_{S}(t) + m_{1}u_{1}(t) + m_{2}u_{2}(t)}{u_{S}(t_{0}) + m_{1}u_{1}(t_{0}) + m_{2}u_{2}(t_{0})}$$

[ISS] https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19\_8-settembre-2021.pdf epiMOX

## Monitoring the vaccination campaign

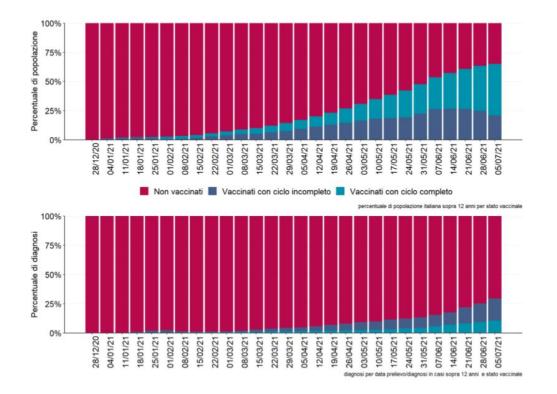


FIGURA 22 – PERCENTUALE DI POPOLAZIONE (IN ALTO) E DI CASI (IN BASSO) DI ETÀ > 12 ANNI PER STATO VACCINALE E SETTIMANA IN ITALIA, 27 DICEMBRE 2020 – 11 LUGLIO 2021

Nota: Ogni barra indica la percentuale di casi in ciascuna settimana (lunedi-domenica). La data riportata si riferisce all'inizio della settimana

#### Monitoring the vaccination campaign



01/07

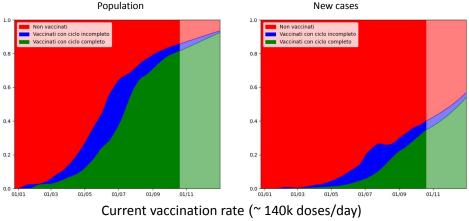
01/09

01/11

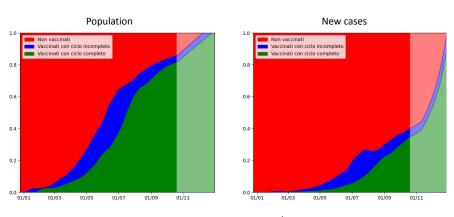
1/01

01/03

01/05



- 20% of the population over 12 is still not fully vaccinated
- With current vaccination rate at the end of 2021, 50% of new cases will still be unvaccinated
- Unvaccinated are more susceptible to severe symptoms
- Current model is able to study different possible vaccination scenarios with different infected distributions





No vaccine First dose Second dose

01/09

01/11

01/07

New cases

Non vaccinati

01/03

01/05

0.8

0.6

0.4

0.2

0.0

01/01

200k doses/dav

Vaccinati con ciclo incompleto

Vaccinati con ciclo completo

## Model calibration

Two-step calibration procedure based on:

1. **least-square procedure** to evaluate the parameters, best fitting the measured time-series of the **lsolated ad home**, **Hospitalized**, **Threatened** and **Expired** compartments

$$\mathcal{J}(\mathbf{p}) := \sum_{j=1}^{n_{me}} \sum_{k=\{I,H,T,E,R_D\}} \alpha_k(t_j) \|\mathbf{Y}_k(t_j,\mathbf{p}) - \hat{\mathbf{Y}}_k(t_j)\|_2^2$$

2. **Monte-Carlo Markov Chain (MCMC)** procedure to compute the posterior probability distribution of the parameters starting from prior distributions centered on the least-square estimates

|            | [       |                           |       | $\beta_U$ |                   | $\omega_I$ |                     | $\omega_H$ |                   | $\gamma_T$ |                   |
|------------|---------|---------------------------|-------|-----------|-------------------|------------|---------------------|------------|-------------------|------------|-------------------|
|            |         |                           | Phase | Median    | 95% CI            | Median     | 95% CI              | Median     | 95% CI            | Median     | 95% CI            |
|            |         |                           | 1     | 0.2640    | [0.2475, 0.2825]  | 0.0059     | [0.00537, 0.00648]  | 0.0132     | [0.0121, 0.0146]  | 0.0760     | [0.0691,  0.0837] |
|            | Median  | 95% CI                    | 2     | 0.3658    | [0.3329, 0.3936]  | 0.00771    | [0.00701, 0.00847]  | 0.0192     | [0.0173,  0.0210] | 0.1252     | [0.1133,  0.1372] |
| δ          | 0.12041 | [0.10739,  0.12841]       | 3     | 0.3449    | [0.3223, 0.3685]  | 0.00933    | [0.00849, 0.01018]  | 0.0223     | [0.0202, 0.0243]  | 0.0886     | [0.0793,  0.0958] |
| $\gamma_I$ | 3.78e-5 | [3.43e-5, 4.15e-5]        | 4     | 0.2756    | [0.2485, 0.2972]  | 0.00691    | [0.00629, 0.00755]  | 0.0264     | [0.0238, 0.0286]  | 0.1561     | [0.1400, 0.1689]  |
| $ ho_U$    | 0.12320 | [0.11303,  0.13593]       | 5     | 0.2421    | [0.2202, 0.2658]  | 0.00496    | [0.00445,  0.00537] | 0.0259     | [0.0233, 0.0281]  | 0.1673     | [0.1517,  0.1830] |
| $\rho_I$   | 0.02408 | [0.02197,  0.02658]       | 6     | 0.1779    | [0.1615, 0.1952]  | 0.00422    | [0.00383, 0.00464]  | 0.0269     | [0.0243, 0.0293]  | 0.1909     | [0.1741, 0.2103]  |
| $ ho_H$    | 0.06677 | [0.06171,  0.07212]       | 7     | 0.2093    | [0.1906, 0.2307]  | 0.00340    | [0.00309,  0.00373] | 0.0263     | [0.0238, 0.0286]  | 0.1900     | [0.1726, 0.2079]  |
| $\theta_T$ | 0.05026 | [0.04517, 0.05456]        | 8     | 0.1924    | [0.1743, 0.2109]  | 0.00313    | [0.00283, 0.00342]  | 0.0251     | [0.0226, 0.0272]  | 0.1872     | [0.1708,  0.2055] |
| $U(t_I)$   | 12571   | $\left[9346, 15775 ight]$ | 9     | 0.3052    | [0.2780,  0.3354] | 0.00309    | [0.00281, 0.00339]  | 0.0244     | [0.0223, 0.0269]  | 0.1924     | [0.1729,  0.2086] |
| $R(t_I)$   | 2551280 | [2270830, 2832576]        | 10    | 0.2949    | [0.2686,  0.3251] | 0.00351    | [0.00319,  0.00385] | 0.0249     | [0.0226,  0.0272] | 0.1867     | [0.1700,  0.2053] |

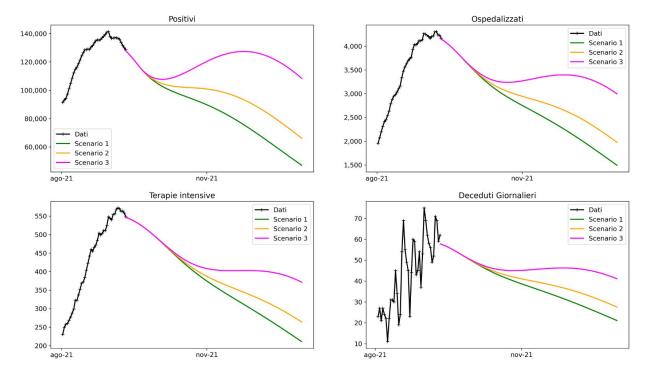
Constant parameters

#### Time-varying parameters

#### Vaccine model in action - 1

Scenario analysis on the effect of the school reopening combined with the application of GreenPass in schools and universities:

- Scenario 1: with GreenPass applied 100%
- Scenario 2: with GreenPass applied 50%
- Scenario 3: without GreenPass

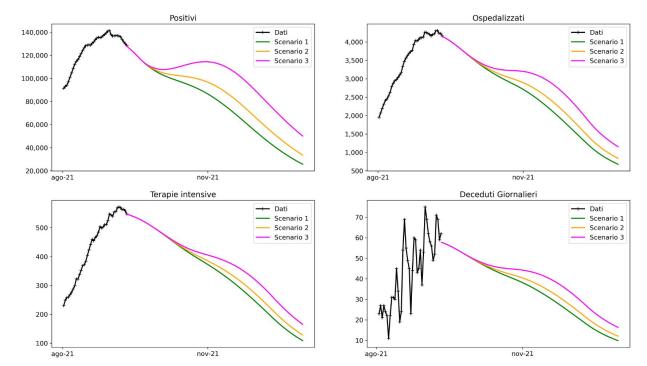


#### Current vaccination rate

#### Vaccine model in action - 2

Scenario analysis on the effect of the school reopening combined with the application of GreenPass in schools and universities:

- Scenario 1: with GreenPass applied 100%
- Scenario 2: with GreenPass applied 50%
- Scenario 3: without GreenPass

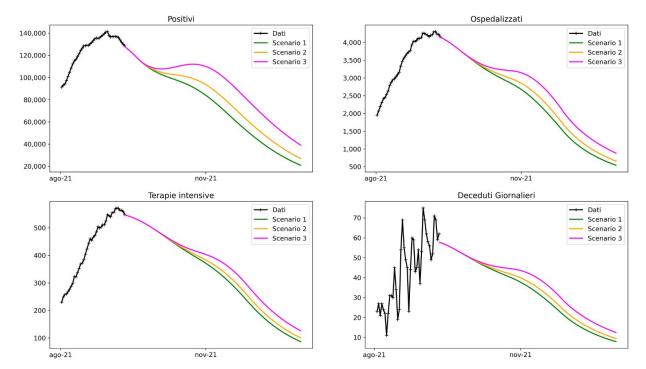


200k first doses/day - 200k second doses/day

#### Vaccine model in action - 3

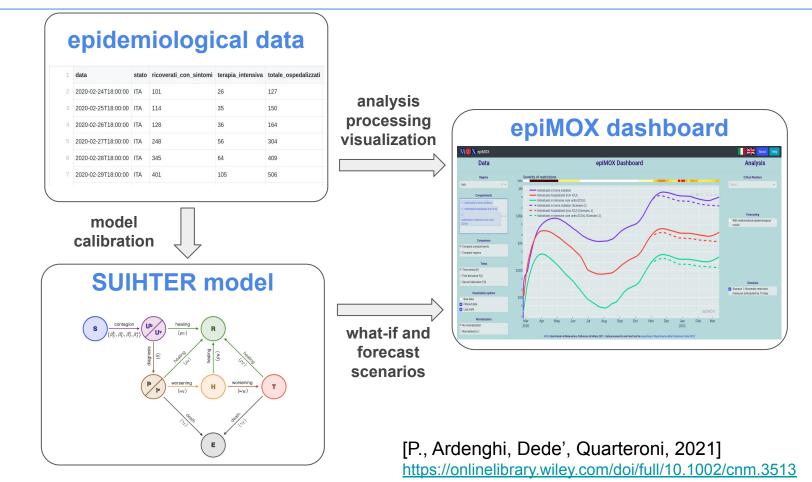
Scenario analysis on the effect of the school reopening combined with the application of GreenPass in schools and universities:

- Scenario 1: with GreenPass applied 100%
- Scenario 2: with GreenPass applied 50%
- Scenario 3: without GreenPass



300k first doses/day - 300k second doses/day

## Integration in the epiMOX Dashboard (epimox.polimi.it)



epiMOX

#### Ongoing developments and next challenges

**Model extension:** the age-structure has been already included in the SUIHTER model. Further work is required to make the age-based calibration satisfactory

**Model calibration:** investigation of alternative strategies for parameter prior distributions [1]

**Vaccination:** addition of immunity duration for recovered and vaccinate and possible adoption of the third dose

**Control:** definition an optimal control strategy for the identification of optimal strategies in the vaccination campaign [2]

[1] Bartolucci, Pennoni, Mira, A multivariate statistical approach to predict COVID-19 count data with epidemiological interpretation and uncertainty quantification, SIM, 2021

[2] Ziarielli, Numerical modelling of optimal vaccination strategies for SARS-CoV-2, Master Thesis, Politecnico di Milano, 2021

# Thank you for your attention!

Joint work with: Giovanni Ardenghi, Luca Dede', Alfio Quarteroni, Giulia Villani

Acknowledgements: Paola F. Antonietti, Andrea Manzoni, Edie Miglio, Andrea Pugliese, Marco Verani