Modelling COVID-19 from a physicist's perspective

Dean Karlen / UVic and TRIUMF Department of Physics and Astronomy

European COVID-19 Modelling Hub July 6, 2021

My background

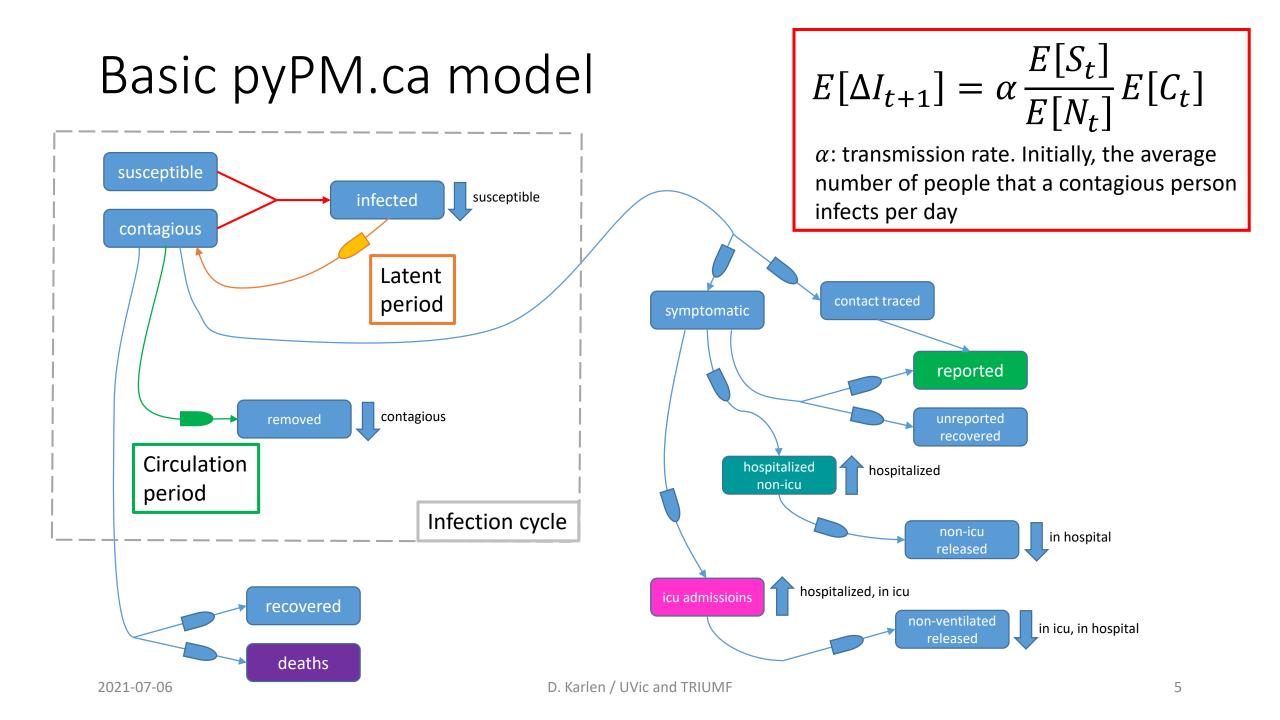
- Professor in Particle Physics at the University of Victoria holding a joint appointment with the TRIUMF Laboratory (BC – Canada)
 - Build experiments and analyze data in large international collaborations
 - I teach data analysis to physicists
- Since April 2020, using a model based on a physicists perspective:
 - Incorporate the fundamental workings of the system.
 - Keep it as simple as possible. A model is never "perfect" (always wrong!)
 - Focus on its main purpose: interpret data to learn about the spread of COVID
 - The model (<u>www.pypm.ca</u>) has served that purpose well
 - Engaged in regular discussions with academics in epidemiology in BC
- Since July 2020, participating in the US CDC COVID-19 forecasting group
 - US case/hospitalization/death data are very useful to challenge models
 - Led to joining the German forecast-hub later in 2020 \rightarrow European hub

Overview

- Introducing the pypm model
- Insights:
 - Piece-wise constant transmission rates:
 - describe case, hospitalization, death time series reasonably well
 - give models an ability to forecast the spread of COVID-19
 - Variants and Vaccination have large impact on the spread:
 - models that incorporate these have an improved ability to forecast
- Summary
 - comments on data access/collaboration/forecasts and public policy

pyPM.ca: python Population Modeller

- A general framework for building population models: pypmca
 - Based on finite time-difference equations
 - allows for arbitrary time delay distributions (not limited to exponential)
 - choose $\Delta t = 1$ day to match data sources
 - Model objects are built from "population" objects and "connection" objects
 - Separates model design from numerical implementation: simplifies model construction and modification
 - Model objects can evolve expectation values and can produce simulated data
 - Simulated data essential to evaluate parameter estimators and to report quantiles
- A technical graphical user interface for jupyter notebook: ipypm
 - interact with data and models, explore parameter space
 - model parameters are estimated by fitting to cumulative case data (no ML)
- Open source on pypi/github
 - See: <u>www.pypm.ca</u>
 - Single click startup



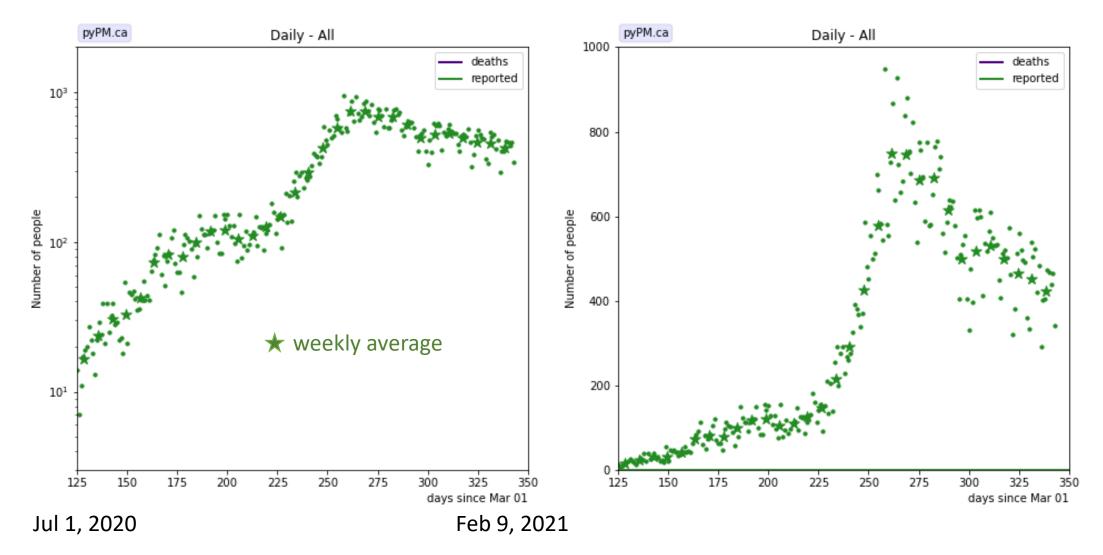
Epidemic growth

• The "steady state" solution to the infection cycle equations (with constant susceptible fraction) is exponential growth (or decline): characterized by δ :

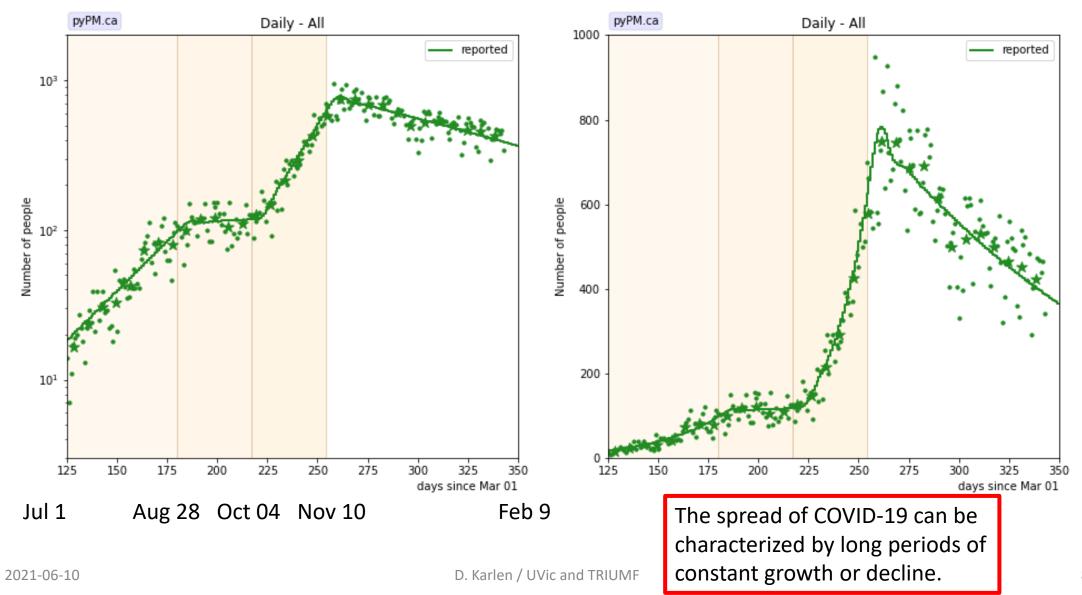
 $E[C_{t+1}] = (1+\delta)E[C_t]$

- C_t : size of the circulating contagious population on day t
- Imposing lockdown measures, reduces social contacts (reducing $\alpha),$ thereby reducing δ
 - Use case data to determine the transmission rate and when it changes
- Transmission rates alone do not determine the growth (δ)
 - In the pyPM model: also depends on the latent and circulation period delays
 - In my analyses I keep these delays fixed, so the estimated values for α are "effective transmission rates"

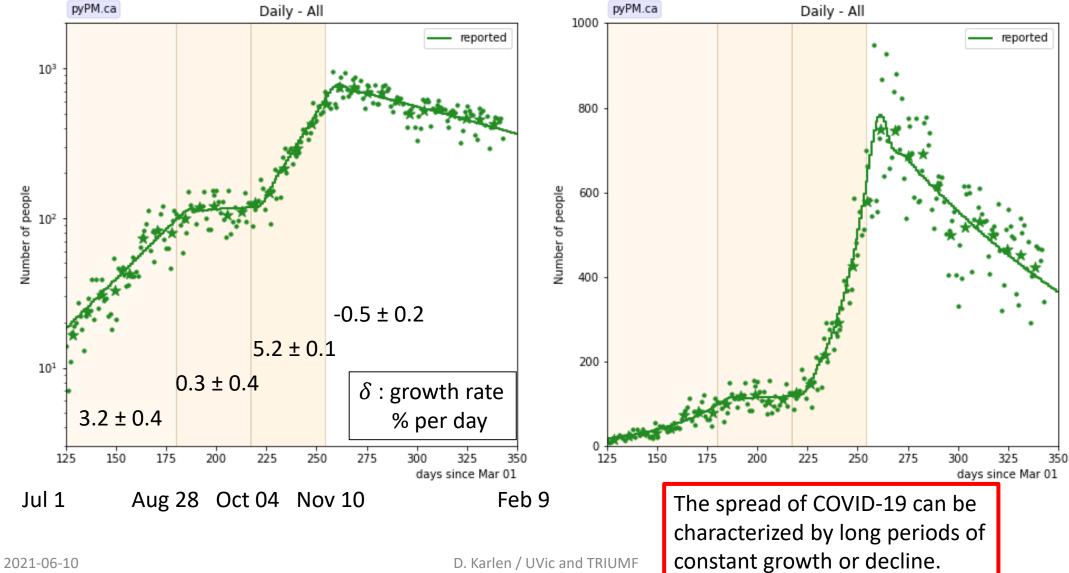
Example: BC-Canada case data (July 2020 – Feb 2021)



BC-Canada case data (with model)



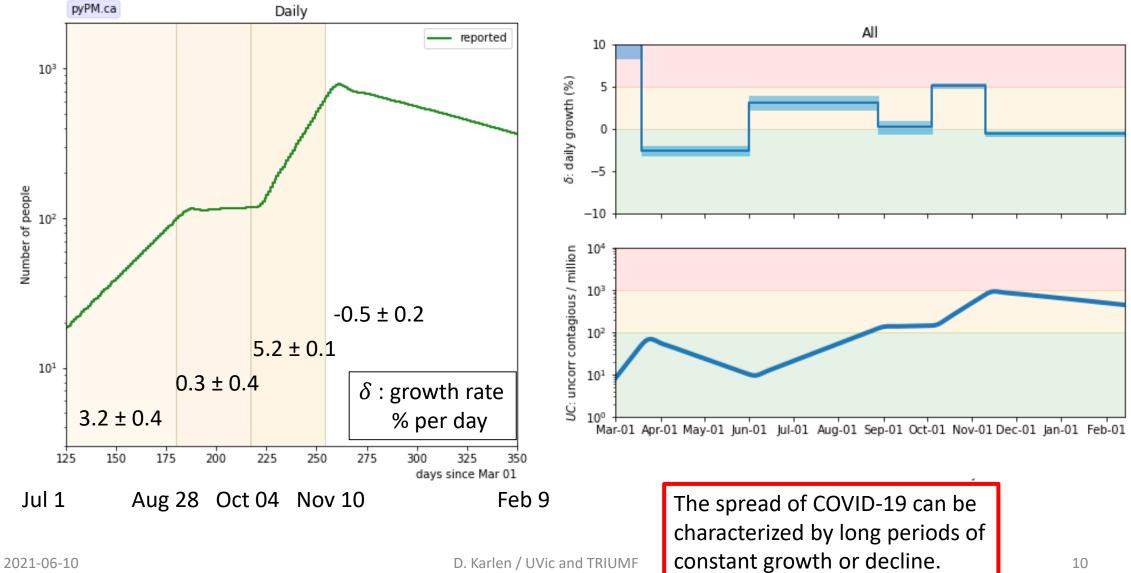
BC case data (with model)



9

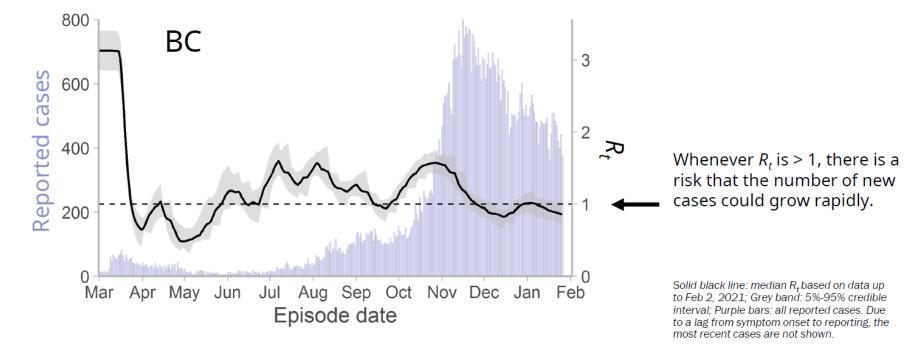
BC model

BC case history characterized by just a few "model independent" quantities.



Dynamic Compartmental Modeling: Recent Trends

Provincially, our model-based estimate of R_t (average daily number of new infections generated per case) continues to hover near 1.

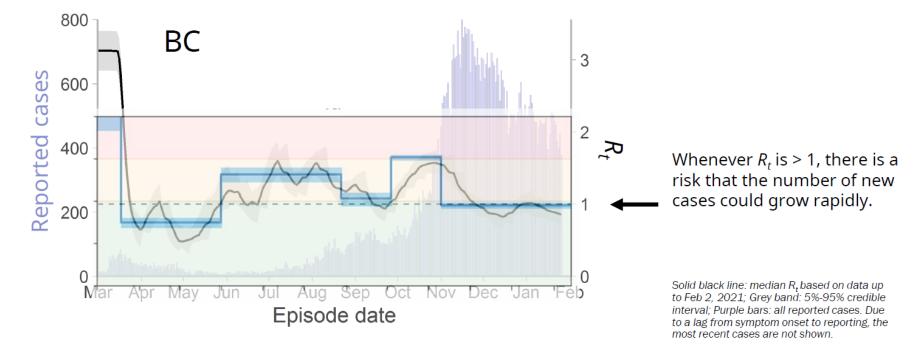


COVID-19 IN BC				The spread of COVID-19 can be	21
		Many epidemiologists		characterized by long periods of	
2021-	06-10	do not use this approach		constant growth or decline.	

11

Dynamic Compartmental Modeling: Recent Trends

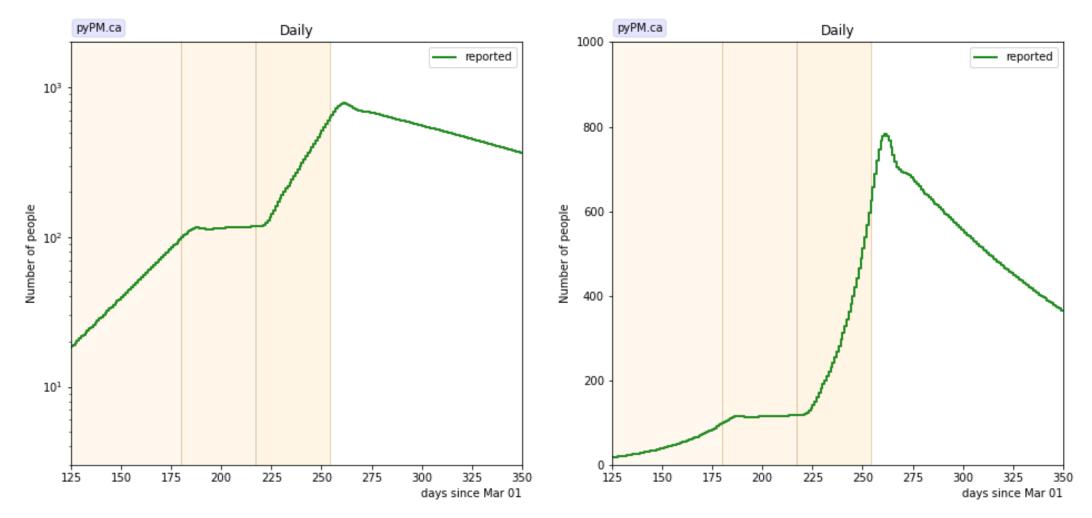
Provincially, our model-based estimate of R_t (average daily number of new infections generated per case) continues to hover near 1.



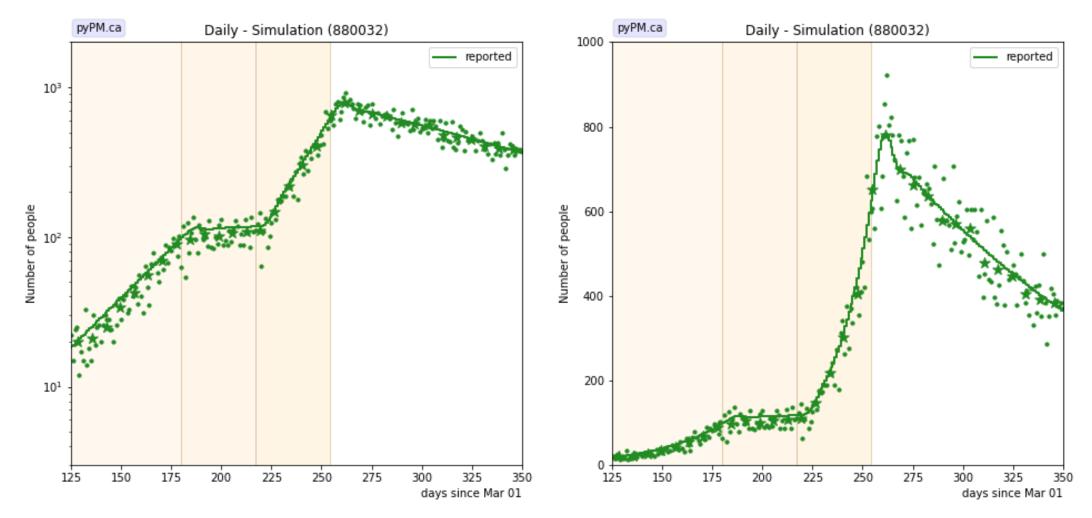
COVID-19 IN BC			The spread of COVID-19 can be	21
	Many epidemiologists		characterized by long periods of	
2021-06-10	do not use this approach	RIUMF	constant growth or decline.	

12

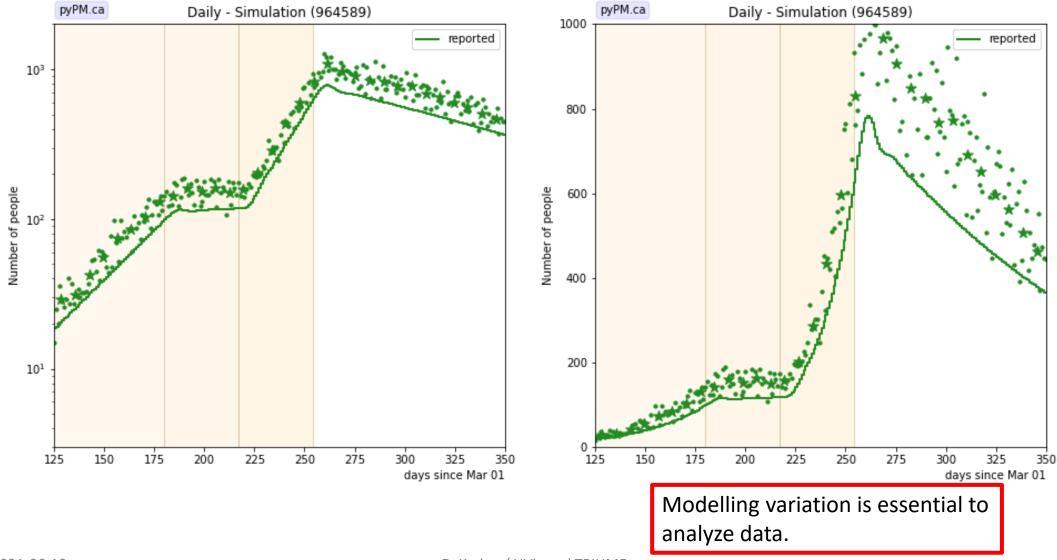
Modelling variation: BC model



Modelling variation: BC model

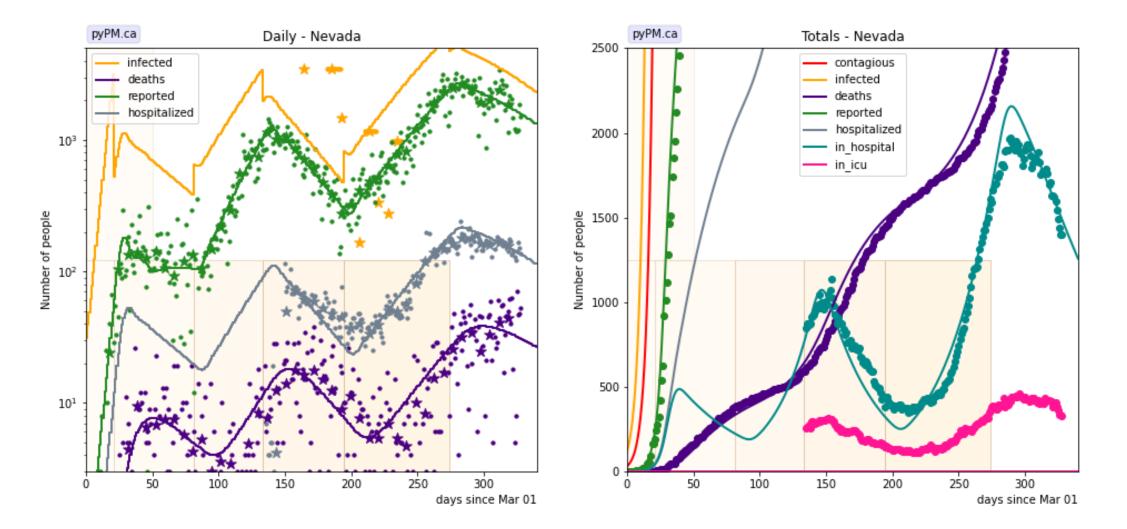


Modelling variation: BC model



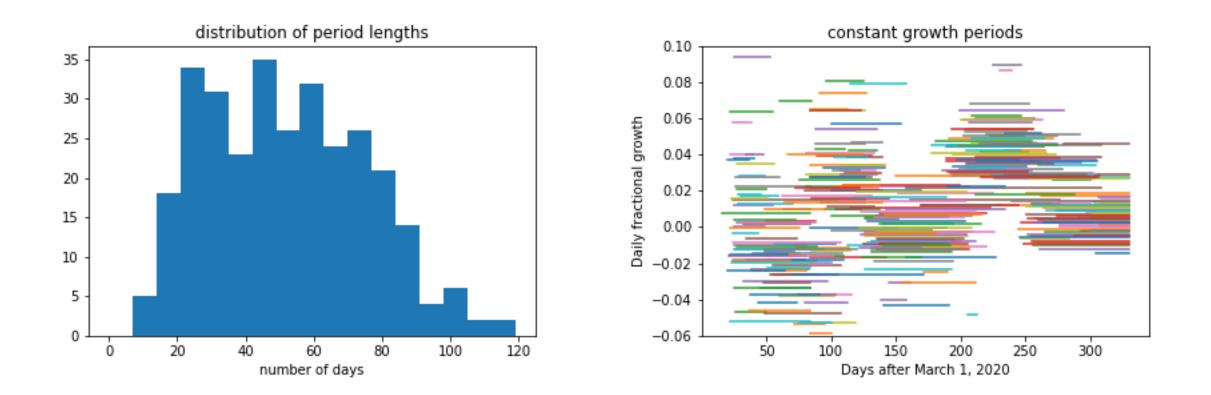
D. Karlen / UVic and TRIUMF

Example: Nevada (US)



Periods of constant transmission are long

• Mean length almost 2 months (for US states)

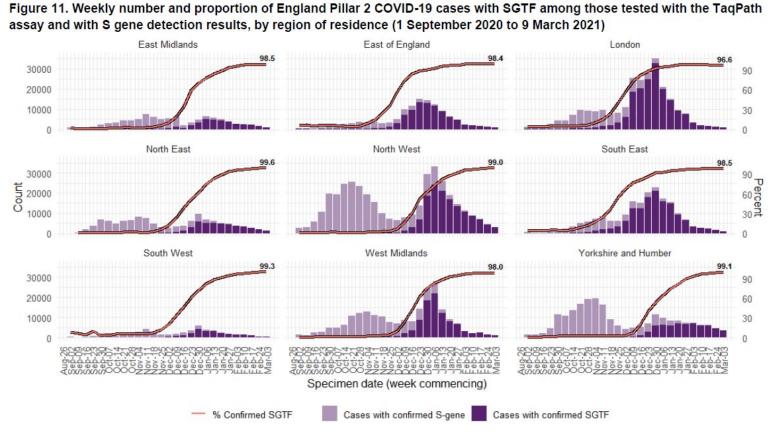


Forecasting the spread of COVID

- In 2020, models had some ability to forecast the future, thanks to long periods of constant transmission rate
- Changes to transmission rate (timing and amount) difficult to predict:
 - difficult to model effectiveness of NPI from first principles
 - difficult to model human behaviour
- Starting in 2021 models could predict changes in the spread of COVID due to:
 - Variants solution: add second (and third) infection cycle to model
 - properties of the variants known from genomic sampling
 - Immunity solution: reduce susceptible fraction according to infections and vaccination
 - vaccination rate and effectiveness reasonably well known

The alpha variant

- Rapid case growth in the UK (shortly after relaxation measures)
- Their PCR test at the time targeted 3 genes to identify SARS-CoV-2
- Saw rapid growth in cases in which one of the genes was not present: S-gene
 - Referred to such cases as SGTF (S-gene target failure)
- A fortuitous indicator to identify the first "Variant of Concern": B.1.1.7 (alpha)



Modeling a rapidly spreading variant

• Consider steady-state exponential growth of two strains: their ratio

$$\frac{N_{v}(t)}{N_{nv}(t)} = \frac{N_{v0}e^{r_{v}t}}{N_{nv0}e^{r_{nv}t}} = ae^{[r_{v}-r_{nv}]t} = ae^{st} = e^{s(t-t_{0})}$$

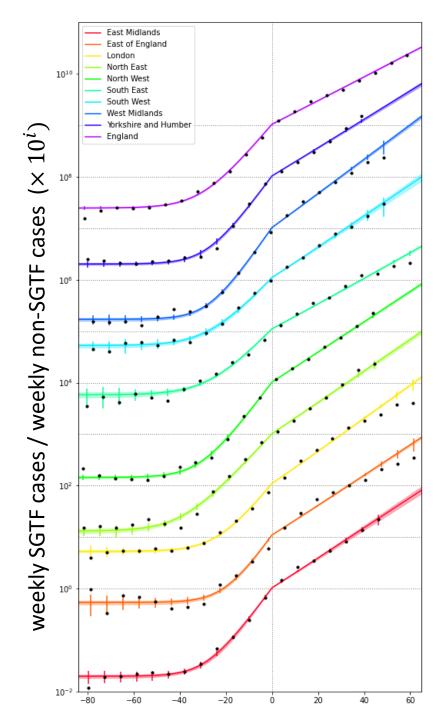
- In population modelling, s is called the "selection coefficient"
- The relation might be a good approximation in more dynamic situations, provided:

$$r_{v}(t) - r_{nv}(t) = s(t) \cong s$$

UK SGTF/non-SGTF ratio

- day = 0: date when ratio = 1 (crossover day)
- s1: selection coefficient prior to crossing
- s2: selection coefficient after crossing
- w: SGTF false identification for B.1.1.7

region	s1	s2	w
East Midlands	0.141 +/- 0.003	0.067 +/- 0.001	0.019 +/- 0.001
East of England	0.147 +/- 0.004	0.068 +/- 0.000	0.051 +/- 0.002
London	0.127 +/- 0.002	0.074 +/- 0.000	0.051 +/- 0.001
North East	0.112 +/- 0.002	0.070 +/- 0.001	0.013 +/- 0.001
North West	0.137 +/- 0.002	0.068 +/- 0.000	0.014 +/- 0.000
South East	0.108 +/- 0.002	0.058 +/- 0.000	0.055 +/- 0.003
South West	0.111 +/- 0.004	0.070 +/- 0.001	0.050 +/- 0.002
West Midlands	0.148 +/- 0.002	0.077 +/- 0.001	0.017 +/- 0.001
Yorkshire and Humber	0.140 +/- 0.002	0.064 +/- 0.001	0.020 +/- 0.000
England	0.122 +/- 0.000	0.054 +/- 0.000	0.024 +/- 0.000



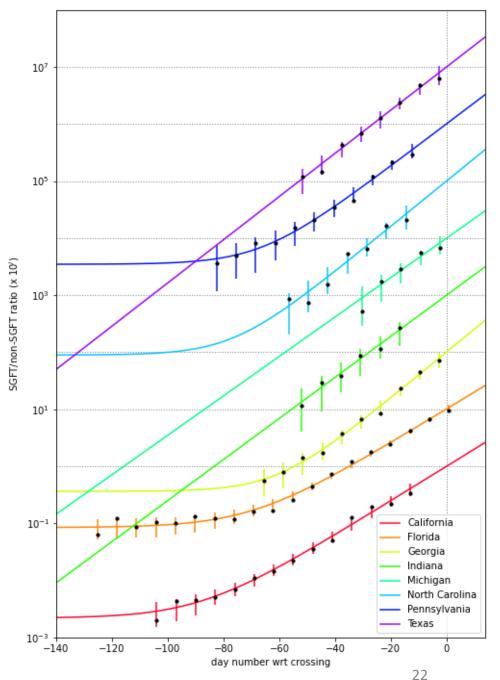
D. Karlen / UVic and TRIUMF

Alpha in USA (mid-March)

- Sufficient data available from 8 states
 - f_v: fraction of cases from variant on Mar 13
 - growth advantage remains, despite vaccination immunity

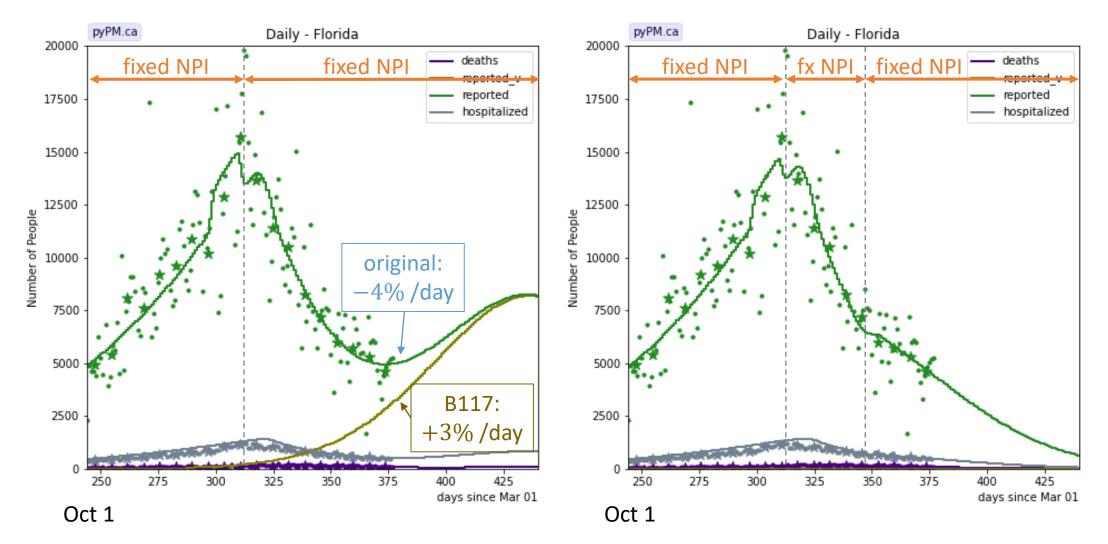
region	S	w	f_v (Mar 13)
California	0.070 ± 0.004	0.002 ± 0.012	0.381 ± 0.007
Florida	0.069 ± 0.001	0.008 ± 0.001	0.614 ± 0.007
Georgia	0.093 ± 0.002	0.004 ± 0.001	0.578 ± 0.011
Indiana	0.083 ± 0.010	0.000 ± 0.000	0.288 ± 0.044
Michigan	0.080 ± 0.010	0.000 ± 0.000	0.573 ± 0.045
North Carolina	0.092 ± 0.004	0.001 ± 0.003	0.313 ± 0.008
Pennsylvania	0.085 ± 0.002	0.003 ± 0.001	0.366 ± 0.004
Texas	0.087 ± 0.004	0.000 ± 0.000	0.572 ± 0.028

https://www.helix.com/pages/helix-covid-19-surveillance-dashboard



Florida Data fit with B.1.1.7

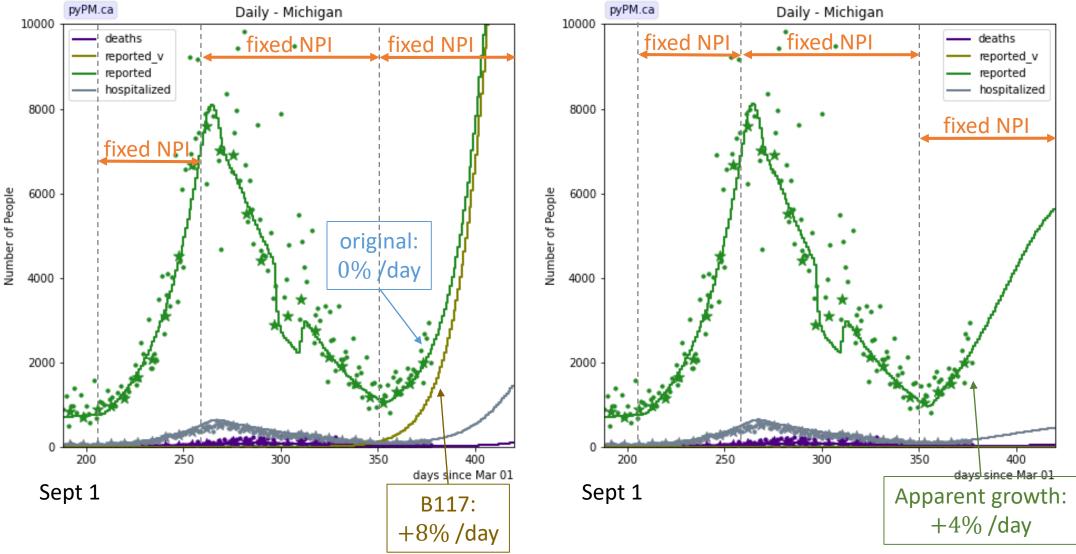
Data fit without B.1.1.7: change in NPI



Michigan

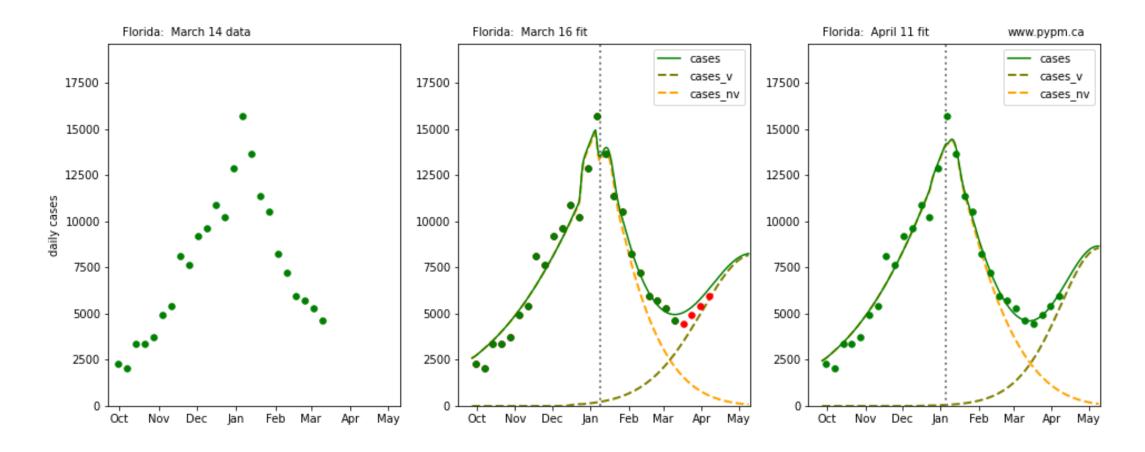
Data fit with B.1.1.7

Data fit without B.1.1.7: only change in NPI



Florida

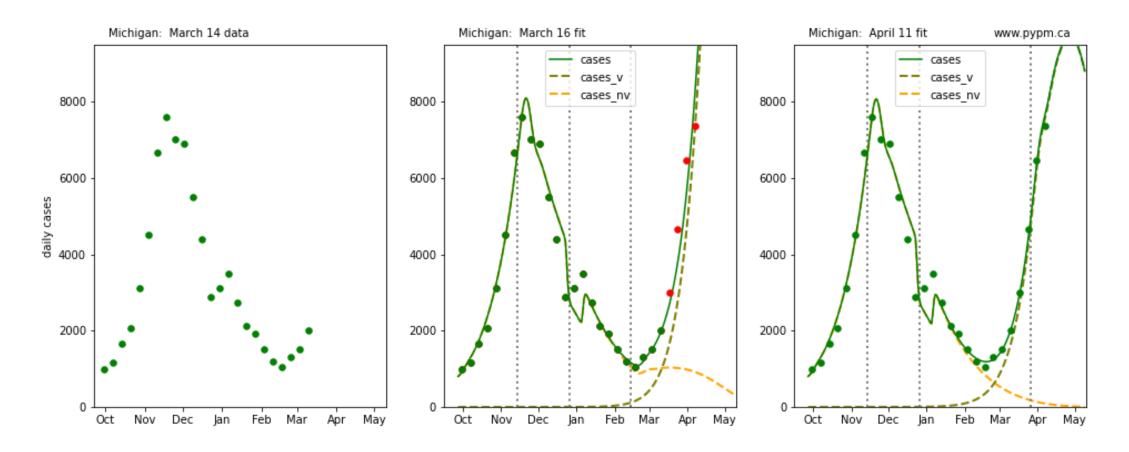
curve: March 16 fit red points: 4 weeks data following



Models had some ability to predict a change in the spread of COVID-19

Michigan

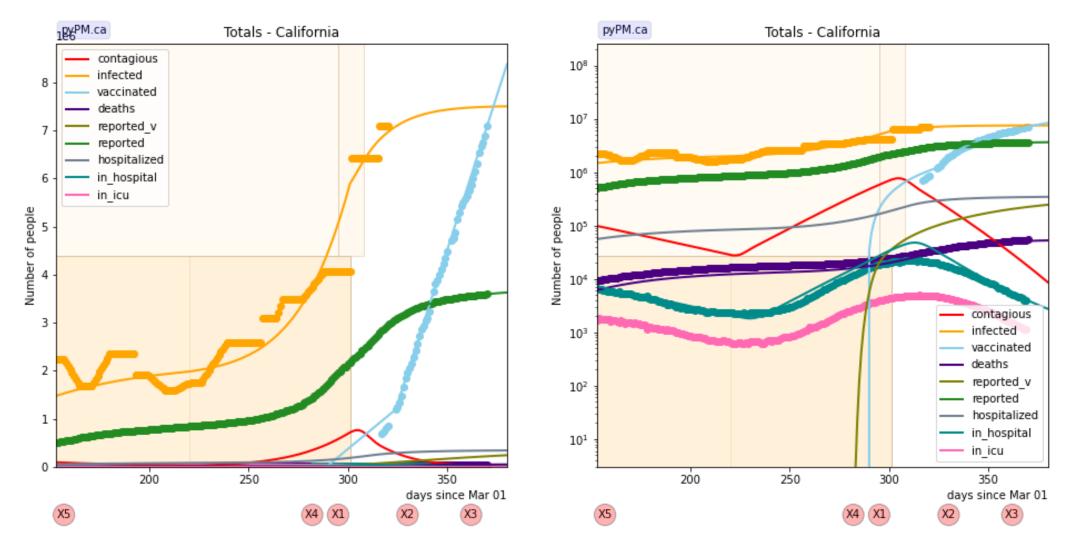
curve: March 16 fit red points: 4 weeks data following



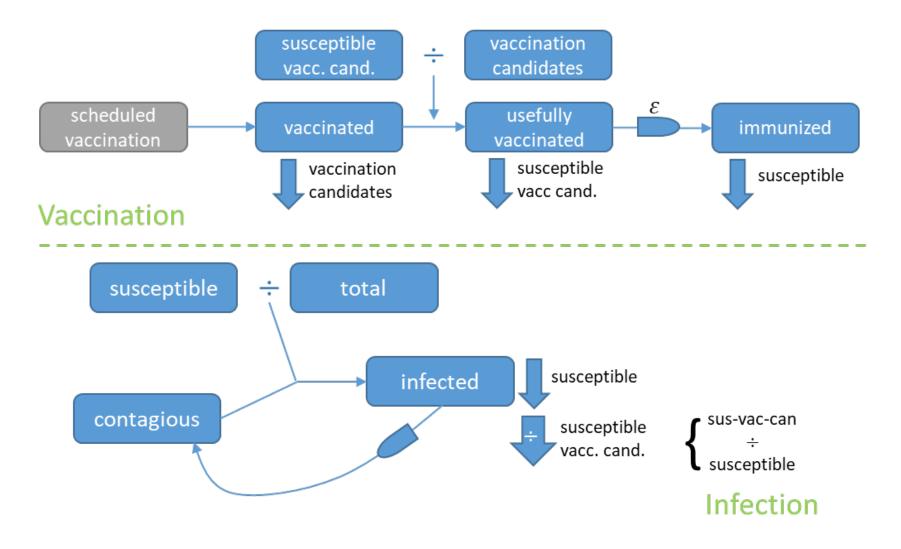
Immunity

- Natural immunity:
 - In early 2020 the fraction of infections that were reported not well known
 - In US seroprevalence data was very useful to estimate that fraction
- Vaccination immunity:
 - Israel provided the earliest population-level data to benchmark vaccination immunity models

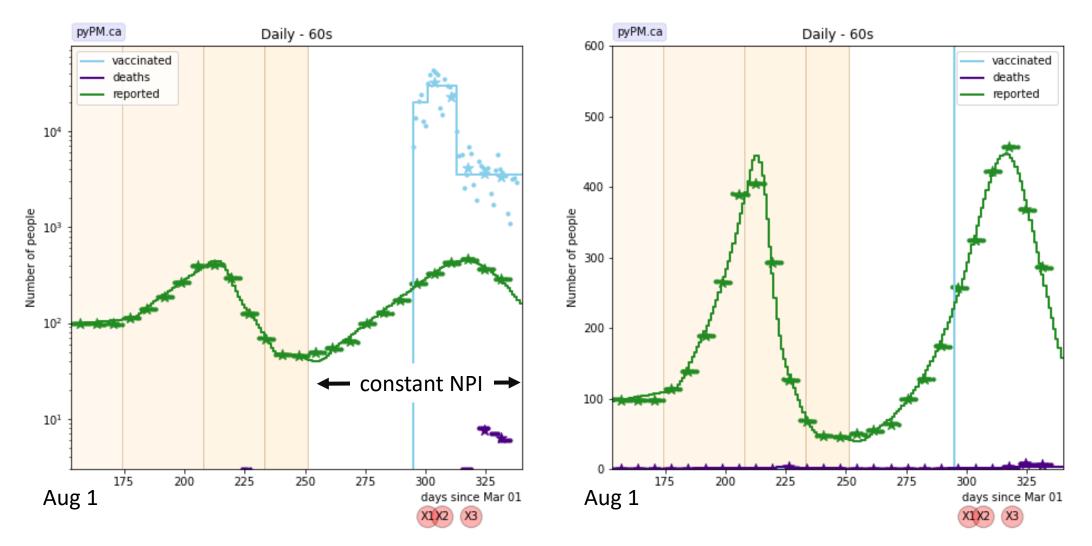
California



The Vaccination Model

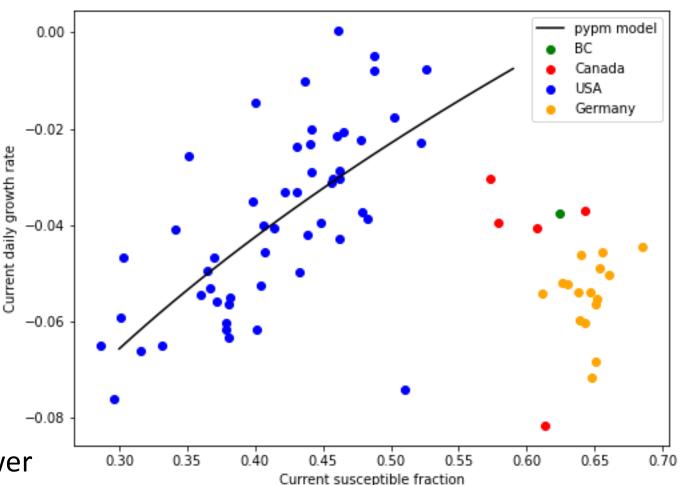


60-69



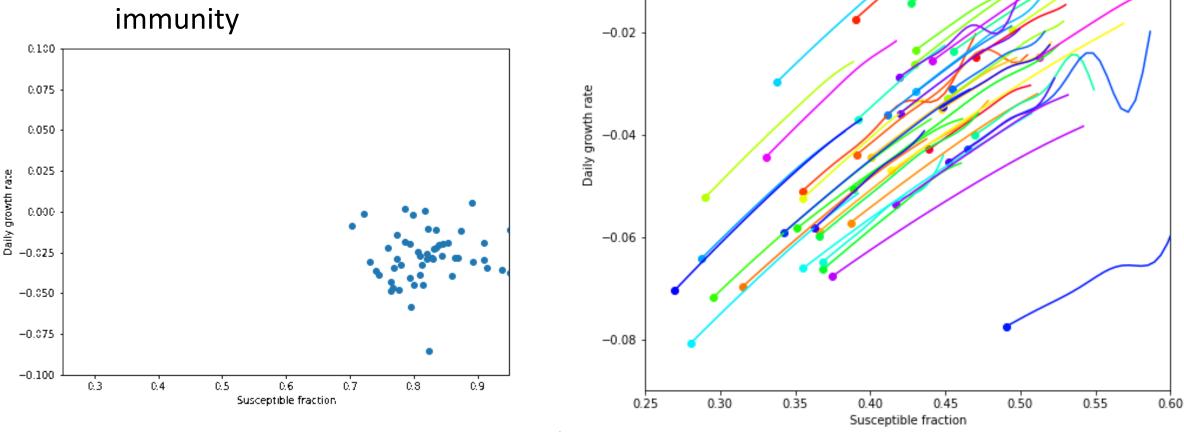
Declining growth rate with increasing immunity

- Currently in the US, the most important factor that determines growth rate is the susceptible fraction
 - wide immunity distribution
 - variation in transmission rates produces less variation in growth
- Transmission rates lower in Canada and Germany than in US
 - immunity distribution narrower



Declining growth rate with increasing immunity

- Animation: from Jan 15 now
 - post Xmas decline, variant growth, variant turnaround, decline from immunity

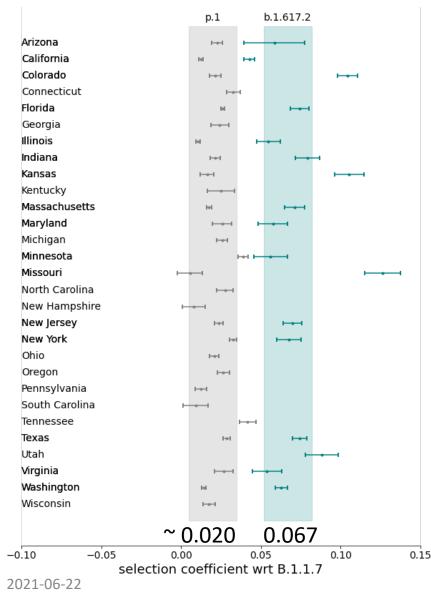


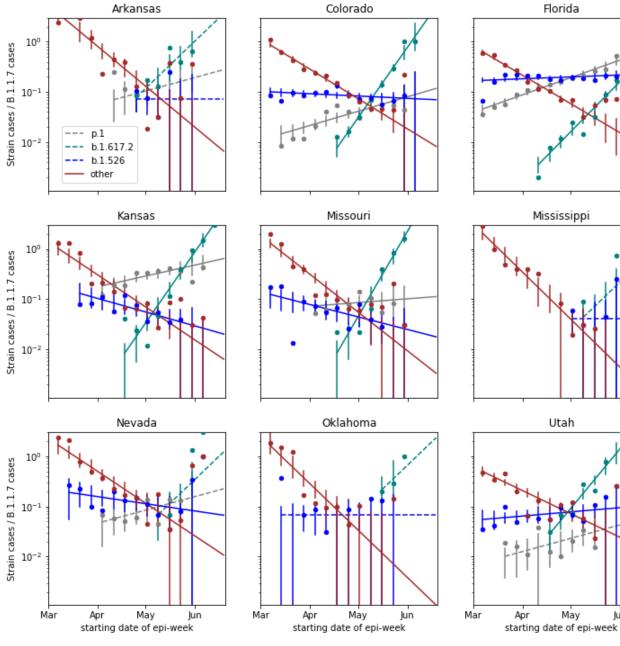
0.00

Past 30 days

D. Karlen / UVic and TRIUMF

Delta in the USA





D. Karlen / UVic and TRIUMF

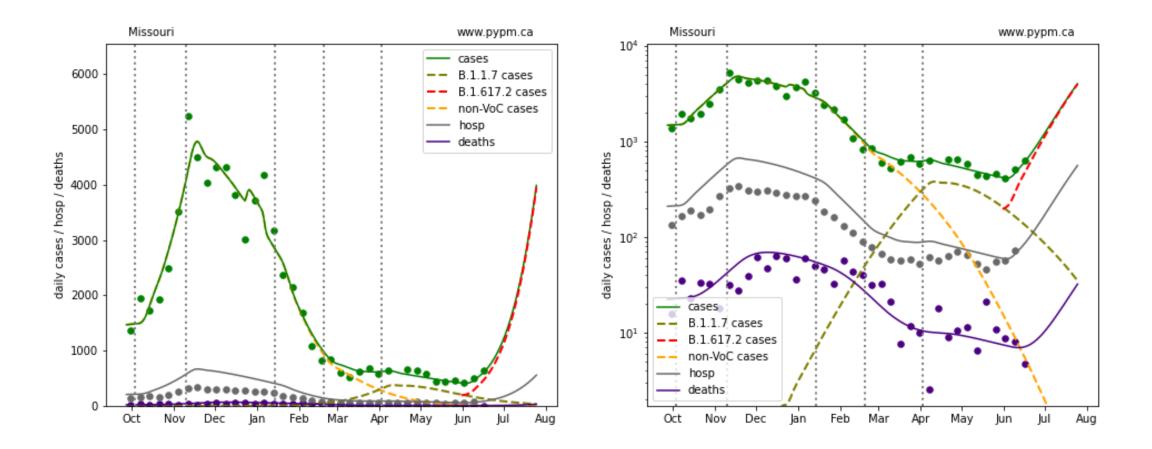
dashed: insufficient data to estimate s 33

May

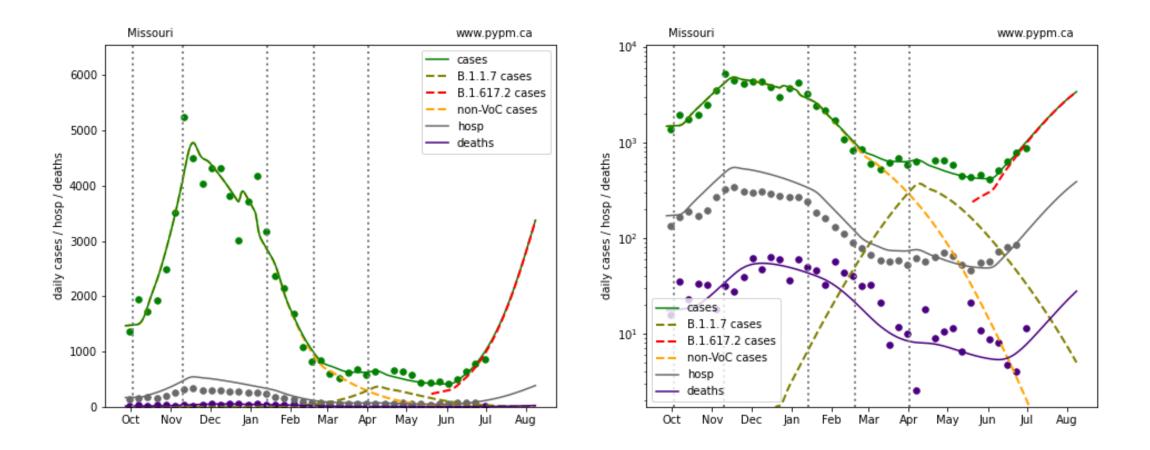
Jun

Missouri (June 20 fit)

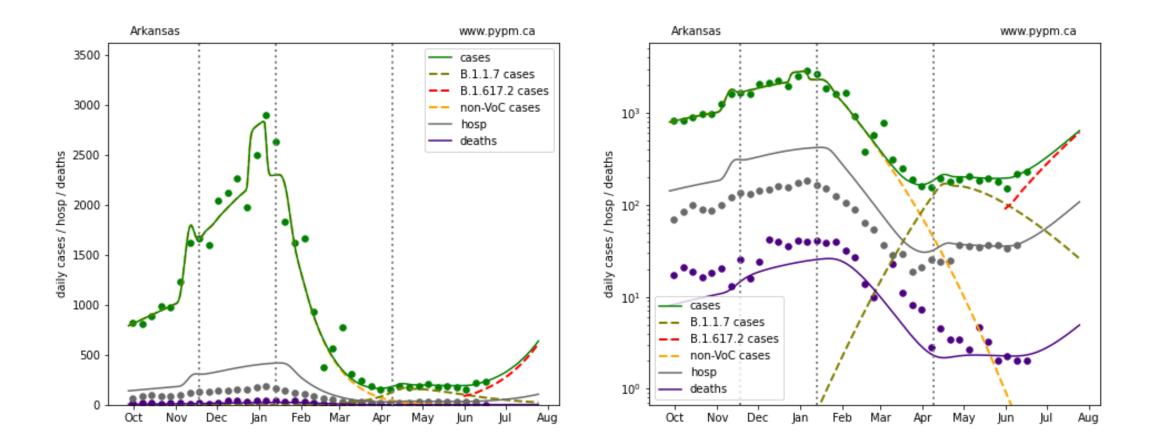
Fit assumes constant NPI since April 1



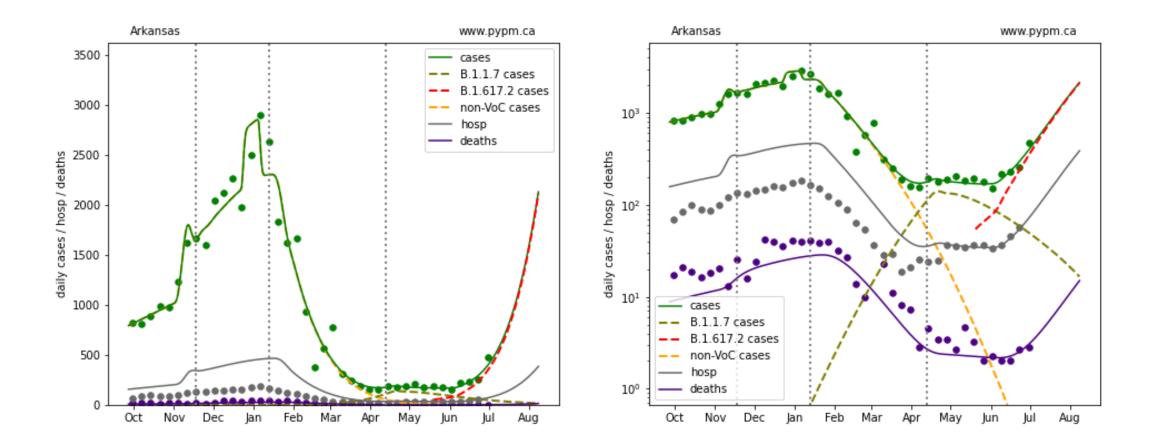
Missouri (July 4 fit)



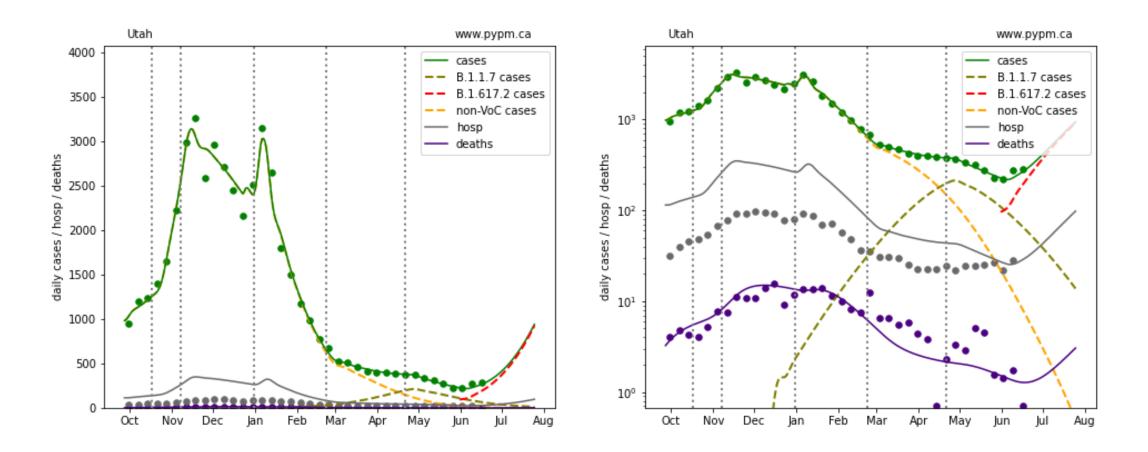
Arkansas (June 20 fit)



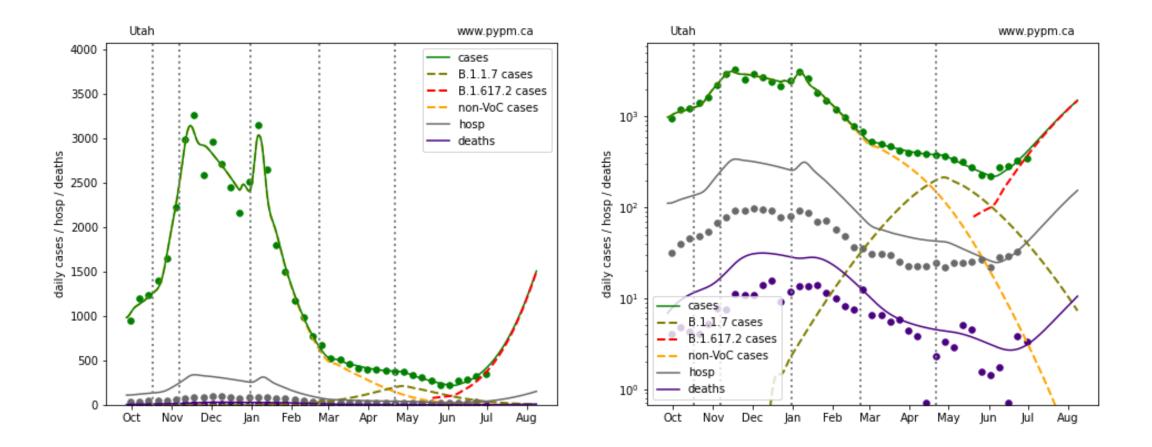
Arkansas (July 4 fit)



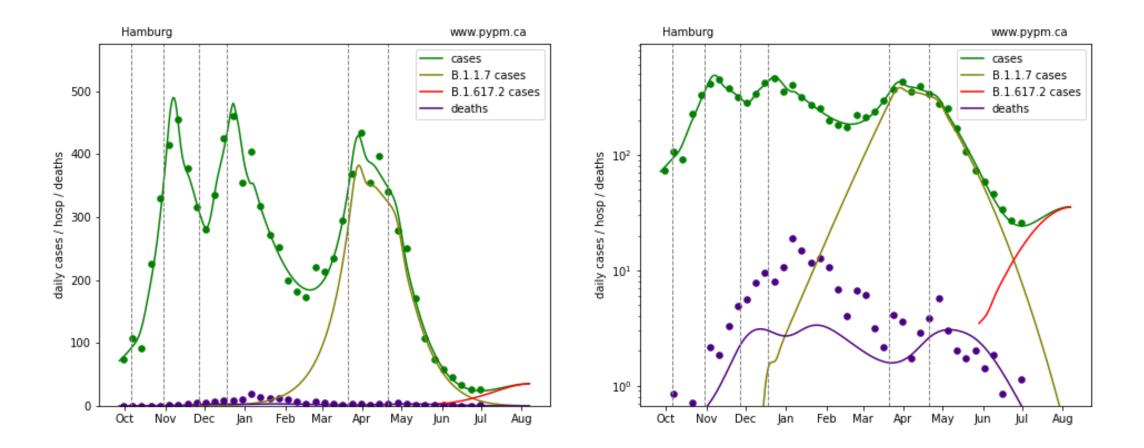
Utah (June 20 fit)



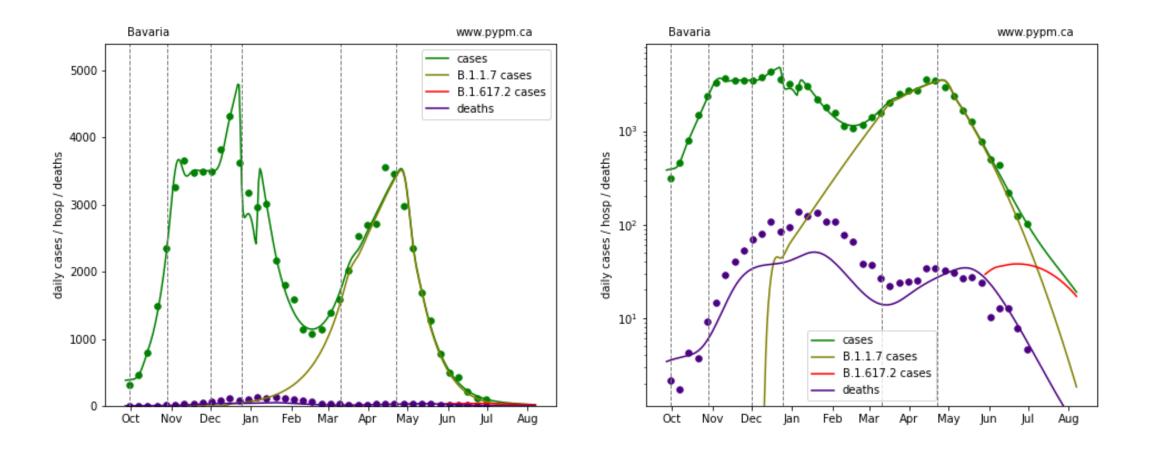
Utah (July 4 fit)



Hamburg (July 4 fit)



Bavaria (July 4 fit)



Summary

- It has been an interesting year being engaged in COVID modelling as an "outsider"
- Some general concerns/points for discussion
 - data access issues have stalled several analyses
 - in Canada, genomic data was slow to be released, often in an unusable form
 - there is limited amount of true collaboration across borders
 - working together on large problems by developing common frameworks/tools
 - public policy only weakly influenced by models
 - in Canada, the coming Alpha storm was not acted upon like a coming hurricane!
- For more information about this work, see: <u>www.pypm.ca</u>