Modeling the COVID-19 epidemic in Germany with emphasis on case detection and compliance with NPIs

Jan Fuhrmann^{*}, Jan Meinke[†]

*Institute of Applied Mathematics, Heidelberg University [†]Jülich Supercomputing Centre, Research Centre Jülich

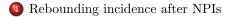
June 22, 2021

Outline

Basic modeling assumptions

2 Under ascertainment and testing capacity

(Non)compliance with non pharmaceutical interventions



Outline

Basic modeling assumptions

2 Under ascertainment and testing capacity

(Non)compliance with non pharmaceutical interventions

4 Rebounding incidence after NPIs

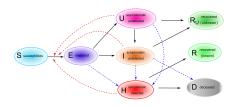
Introduction

SEIR type ODE models

- start with basic SEIR model
- split I by symptoms and detection status

Susceptibles

Exposed (not yet infectious) Undetected infectious (asympt.) Infectious (symptomatic, undetected) H detected infectiuous Recovered (from known infection) R_U unknown recovered Deceased



$$\begin{split} \dot{S} &= -\lambda S \\ \dot{E} &= \lambda S - \alpha E \\ \dot{U} &= (1 - \varrho_0)\alpha E - \gamma_U U \\ \dot{I} &= (1 - \eta_0)\varrho_0\alpha E - \gamma_I I \\ \dot{H} &= \eta_0\rho_0\alpha E + \hat{\eta}_1\gamma_U U \\ &+ \eta_1\gamma_I I - \gamma_H H \\ \dot{R} &= (1 - \delta_H)\gamma_H H \\ \dot{R}_U &= (1 - \hat{\eta}_1)\gamma_U U \\ &+ (1 - \eta_1)(1 - \delta_I)\gamma_I I \\ \dot{D} &= \eta_1 \delta_I \gamma_I I + \delta_H \gamma_H H \end{split}$$

$$\lambda \; = \; \beta_I I + \beta_U U + \beta_H H$$

PARAMETRIZATION OF THE MODEL

Mitglied der Helmholtz-Gemeinschaft

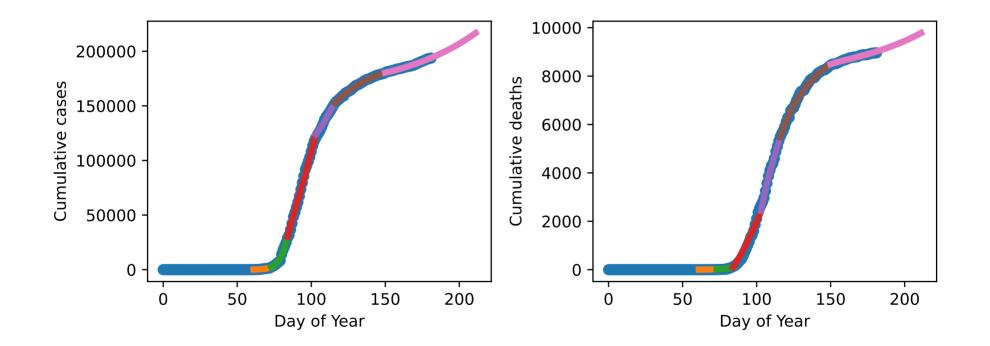
"FIXED" VALUES

Variable	Description	Value
1/γ _E	Mean incubation period	5.5 d
1/γ, 1/γ _Η	Mean duration of symptomatic infection	7 d
1/γυ	Mean duration of asymptomatic incection	6 d
ρ₀	Probability of developing symptoms	0.67
η_1	Probability of early detection	0.067

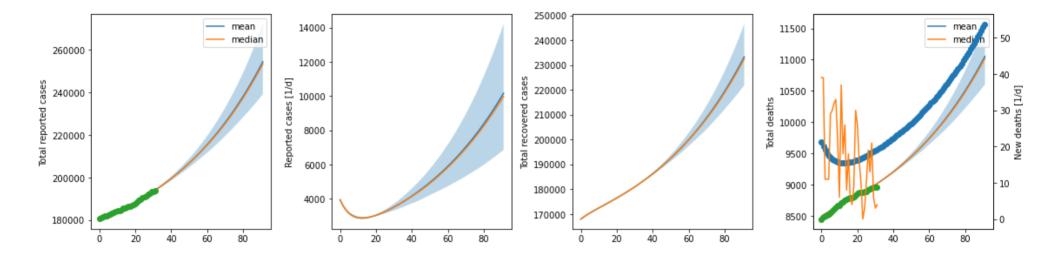
FITTING FREE PARAMETERS

Variable	Description	Value
η_0	Probability of early detection	[0, 1]
η_1	Probability of detection	[0, 1]
βυ	Transmission rate (asymp. undetected)	open
βι	Transmission rate (symp. undetected)	0.8 βυ
βн	Transmission rate (detected)	0.1 βυ

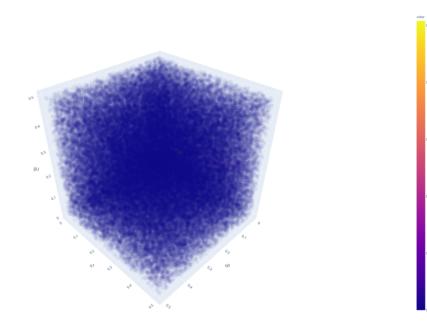
FIT FOR CUMULATIVE CASES AND DEATH



ESTIMATING UNCERTAINTIES



SAMPLING



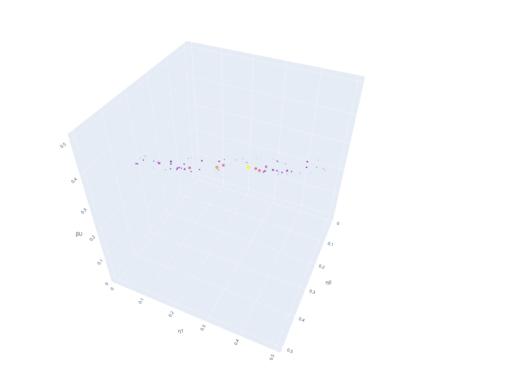
AKAIKE CRITERION

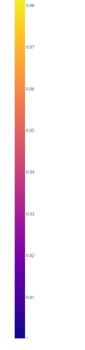
$$AICc = n \left[\ln \left(\frac{SSE}{n} \right) \right] + 2k + \frac{2k(k+1)}{(n-k-1)}$$

$$w_i = \frac{e^{-\Delta_i/2}}{\sum_{j=1}^J e^{-\Delta_j/2}}$$

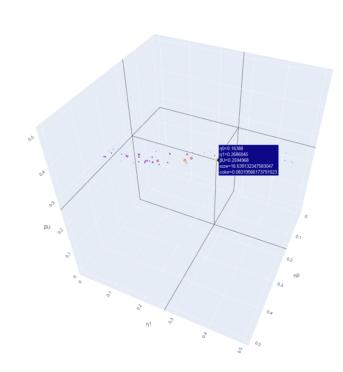
SSE: Sum of errors n: number of data points k: number of degrees of freedom $\Delta_i = AICc_i - AICc_{min}$

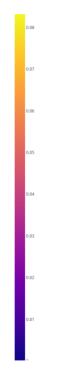
SAMPLING WITH WEIGHTS



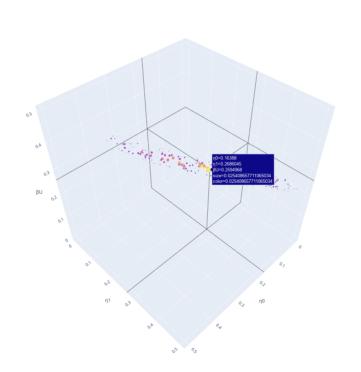


SAMPLING WITH WEIGHTS





SAMPLING WITH WEIGHTS



0.025

0.02

0.015

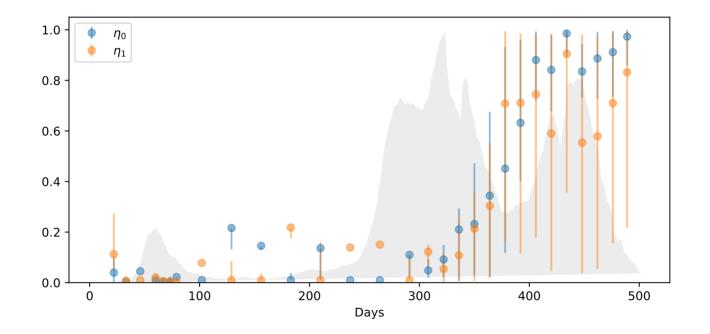
0.005

WEIGHTED HISTOGRAMS

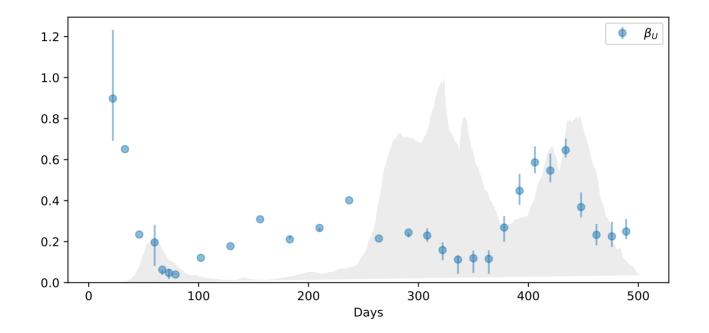


R0 1.23255756174012 1.2354879763906725 1.166431095900522 1.3025629948769604 Weight lost: 1.0981928365770746e-06. Found mean: 1.2282651904210393

ETAS OVER TIME



$B_{\text{U}} \text{ OVER TIME}$



Introduction

SEIR type ODE models

- start with basic SEIR model
- split I by symptoms and detection status

Susceptibles

Exposed (not yet infectious) Undetected infectious (asympt.) Infectious (symptomatic, undetected) H detected infectiuous Recovered (from known infection) R_U unknown recovered Deceased

possible extensions:

- further distinguish infectious individuals: hospitalized, on ICU
- vaccinations, waning immunity ...

$$S = -\lambda S$$

$$\dot{E} = \lambda S - \alpha E$$

$$\dot{U} = (1 - \rho_0)\alpha E - \gamma_U U$$

$$\dot{I} = (1 - \eta_0)\rho_0\alpha E - \gamma_I I$$

$$\dot{H} = \eta_0\rho_0\alpha E + \hat{\eta}_1\gamma_U U$$

$$+ \eta_1\gamma_I I - \gamma_H H$$

$$\dot{R} = (1 - \delta_H)\gamma_H H$$

$$\dot{R}_U = (1 - \hat{\eta}_1)\gamma_U U$$

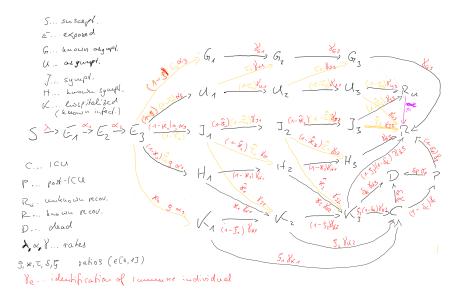
$$+ (1 - \eta_1)(1 - \delta_I)\gamma_I I$$

$$\dot{D} = \eta_1\delta_I\gamma_I I + \delta_H\gamma_H H$$

$$\lambda = \beta_I I + \beta_U U + \beta_H H$$

Introduction

Illustration of possible extensions



Outline

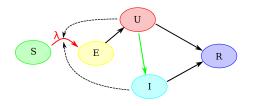
2 Under ascertainment and testing capacity

(Non)compliance with non pharmaceutical interventions

SEUIR model (I = detected cases, no distinction of asympt. infections):

$$\begin{split} \dot{S} &= -(\beta_U U + \beta_I I) S \\ \dot{E} &= (\beta_U U + \beta_I I) S - \gamma_E E \\ \dot{U} &= \gamma_E E - (\gamma_U + \eta_U) U \\ \dot{I} &= \eta_U U - \gamma_I I \\ \dot{R} &= \gamma_U U + \gamma_I I \end{split}$$

model structure:



only $U \to I$ contributes to "daily new cases"

Unrealistic: constant detection ratio $\frac{\eta_U}{\eta_U + \gamma_U}$ independent of prevalence

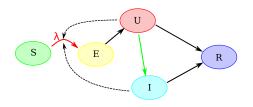
Tests are a fast variable:
$$\sigma$$
, τ , ρ
are large to ensure that testing
capacity cannot be "stored":
 $\dot{T} \approx 0$, i.e.,

$$T\approx \frac{\sigma}{\tau+\langle\rho,X\rangle}$$

SEUIR model (I = detected cases, no distinction of asympt. infections):

$$\begin{split} \dot{S} &= -(\beta_U U + \beta_I I) S \\ \dot{E} &= (\beta_U U + \beta_I I) S - \gamma_E E \\ \dot{U} &= \gamma_E E - (\gamma_U + \eta_U) U \\ \dot{I} &= \eta_U U - \gamma_I I \\ \dot{R} &= \gamma_U U + \gamma_I I \end{split}$$

model structure:



Tests are a fast variable: σ , τ , ρ are large to ensure that testing capacity cannot be "stored": $\dot{T} \approx 0$, i.e.,

$$T\approx \frac{\sigma}{\tau+\langle\rho,X\rangle}$$

only $U \to I$ contributes to "daily new cases"

Unrealistic: constant detection ratio $\frac{\eta_U}{\eta_U + \gamma_U}$ independent of prevalence

SEUIR model (I = detected cases, no distinction of asympt. infections):

$$\begin{split} \dot{S} &= -(\beta_U U + \beta_I I)S \\ \dot{E} &= (\beta_U U + \beta_I I)S - \gamma_E E \\ \dot{U} &= \gamma_E E - (\gamma_U + \rho_U T)U \\ \dot{I} &= \rho_U T U - \gamma_I I \\ \dot{R} &= \gamma_U U + \gamma_I I \end{split}$$

add Test "population":

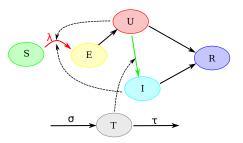
$$\dot{T} = \sigma - \tau T - \langle \rho, X \rangle T$$

 $\rho = (\rho_S, \rho_E, \rho_U, \rho_I, \rho_R),$ X = (S, E, U, I, R)

Tests are a fast variable: σ , τ , ρ are large to ensure that testing capacity cannot be "stored": $\dot{T} \approx 0$, i.e.,

J Fuhrmann, JH Meinke (IAM/JSC)

model structure:



only $U \to I$ contributes to "daily new cases"

Unrealistic: constant detection ratio $\frac{\eta_U}{\eta_U + \gamma_U}$ independent of prevalence

now:

$$\eta_U = \rho_U T$$

varies depending on tests

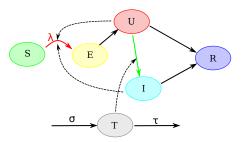
SEUIR model (I = detected cases, no distinction of asympt. infections):

$$\begin{split} \dot{S} &= -(\beta_U U + \beta_I I) S \\ \dot{E} &= (\beta_U U + \beta_I I) S - \gamma_E E \\ \dot{U} &= \gamma_E E - (\gamma_U + \rho_U T) U \\ \dot{I} &= \rho_U T U - \gamma_I I \\ \dot{R} &= \gamma_U U + \gamma_I I \\ \dot{T} &= \sigma - \tau T - \langle \rho, X \rangle T \end{split}$$

Tests are a fast variable: σ , τ , ρ are large to ensure that testing capacity cannot be "stored": $\dot{T} \approx 0$, i.e.,

$$T\approx \frac{\sigma}{\tau+\langle\rho,X\rangle}$$

model structure:



only $U \to I$ contributes to "daily new cases"

Unrealistic: constant detection ratio $\frac{\eta_U}{\eta_U + \gamma_U}$ independent of prevalence

now:

$$\eta_U = \rho_U T$$

varies depending on tests

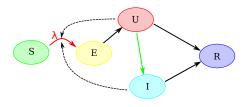
SEUIR model (I = detected cases, no distinction of asympt. infections):

$$\begin{split} \dot{S} &= -(\beta_U U + \beta_I I) S \\ \dot{E} &= (\beta_U U + \beta_I I) S - \gamma_E E \\ \dot{U} &= \gamma_E E - \left(\gamma_U + \frac{\sigma \rho_U}{\tau + \langle \rho, X \rangle} \right) U \\ \dot{I} &= \frac{\sigma \rho_U}{\tau + \langle \rho, X \rangle} U - \gamma_I I \\ \dot{R} &= \gamma_U U + \gamma_I I \end{split}$$

Tests are a fast variable: σ , τ , ρ are large to ensure that testing capacity cannot be "stored": $\dot{T} \approx 0$, i.e.,

$$T\approx \frac{\sigma}{\tau+\langle\rho,X\rangle}$$

model structure:



only $U \to I$ contributes to "daily new cases"

Unrealistic: constant detection ratio $\frac{\eta_U}{\eta_U + \gamma_U}$ independent of prevalence

now:

$$\eta_U = \rho_U T \approx \frac{\sigma \rho_U}{\tau + \langle \rho, X \rangle}$$

Illustration of state dependent detection

compare 4 models for detection:

- tests as population: keep test population T
- testing rate dep. on X: calculate $\eta_U = \frac{\sigma \rho_U}{\tau + \langle \rho, X \rangle}$
- testing rate dep. on U: approximate $\tau + \rho_S S + \rho_E E + \rho_I I + \rho_R R$ by constant K $\eta_U = \frac{\sigma \rho_U}{K + a_U U}$
- constant testing rate: $\eta_U = \text{const.}$, independent of state

N.B.:
$$\mathcal{R}_0 = \frac{\beta_U}{\eta_U|_{DFE} + \gamma_U} + \frac{\beta_I}{\gamma_I} \frac{\eta_U|_{DFE}}{\eta_{|DFE} + \gamma_U}$$

Illustration of state dependent detection

compare 4 models for detection:

- tests as population: keep test population T
- testing rate dep. on X: calculate $\eta_U = \frac{\sigma \rho_U}{\tau + \langle \rho, X \rangle}$
- testing rate dep. on U: approximate $\tau + \rho_S S + \rho_E E + \rho_I I + \rho_R R$ by constant K $\eta_U = \frac{\sigma \rho_U}{K + a_U U}$
- constant testing rate: $\eta_U = \text{const.}$, independent of state

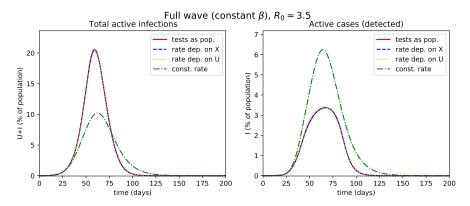
N.B.:
$$\mathcal{R}_0 = \frac{\beta_U}{\eta_U|_{DFE} + \gamma_U} + \frac{\beta_I}{\gamma_I} \frac{\eta_U|_{DFE}}{\eta|_{DFE} + \gamma_U}$$

consider 2 scenarios:

- full epidemic wave: epidemic runs through population unrestrictedly
- with panic factor: transmission decreased at high known prevalence, e.g.:

$$\beta = \beta_0 \left(\alpha + (1 - \alpha) \exp(-\theta I^2) \right)$$

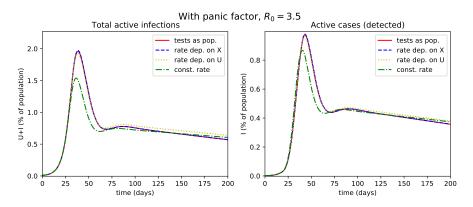
Illustration of state dependent detection



no panic factor, high peak prevalence max. detection ratio $\approx 30\%$

for constant detection ratio: overly optimistic peak height

Illustration of state dependent detection



with panic factor: curve significantly flattened max. detection ratio $\approx 30\%$ (and fairly constant) for constant detection ratio: panic sets in faster \implies lower peak

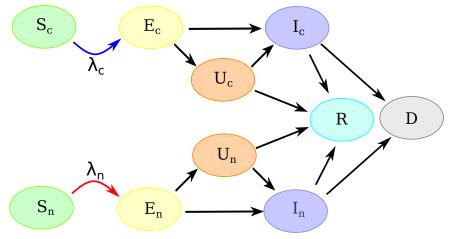
Outline

2 Under ascertainment and testing capacity

(Non)compliance with non pharmaceutical interventions

Noncompliance with NPIs

two subpopulations ("compliant", "noncompliant") – for m = c, n:



three stages for E, last one already infectious

Noncompliance with NPIs

two subpopulations ("compliant", "noncompliant") – for m = c, n:

$$\begin{split} \dot{S}_m &= -\lambda_m(t)S_m \\ \dot{E}_{1,m} &= \lambda_m(t)S_m - \gamma_E E_{1,m} \\ \dot{E}_{2,m} &= \gamma_E E_{1,m} - \gamma_E E_{1,m} \\ \dot{E}_{3,m} &= \gamma_E E_{2,m} - (\gamma_E + \tau_m)E_{3,m} \\ \dot{U}_m &= \gamma_E E_{3,m} - (\gamma_U + \eta_m)U_m \\ \dot{I}_m &= \tau_m E_{3,m} + \eta_m U_m - \gamma_I I_m \\ \dot{R} &= (1 - \delta)\gamma_I (I_c + I_n) + \gamma_U (U_c + U_n) \\ \dot{D} &= \delta\gamma_I (I_c + I_n) \end{split}$$

where

$$\lambda_m = \sum_{k=c,n} \left(\beta_{km,E} E_{3,k} + \beta_{km,U} U_k + \beta_{km,I} I_k \right)$$

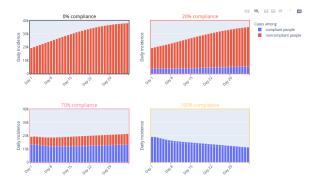
$$\beta_{km,X} = \beta_0 \mu_X a_k s_m$$

 $t < t_0$: $a_c = a_n = s_c = s_n = 1$ (no difference); $\mathcal{R}_0 \approx 1.5$ $t \ge t_0$: $a_c, s_c < 1, a_n = s_n = 1$; $\mathcal{R}_c < \mathcal{R}_0$

J Fuhrmann, JH Meinke (IAM/JSC)

Compliance

Incidence with noncompliance



quick increase to 20,000 new cases per day, then reduce $a_c s_c$ to $\frac{1}{2}$

detected cases for different compliance levels

source: https://cosimo.fzjuelich.de/

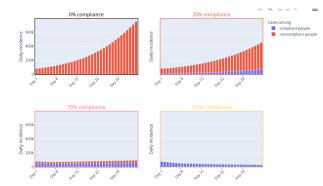
control reproduction number:

$$\mathcal{R}_c = (r\rho + 1 - \rho)\mathcal{R}_0 = (1 - (1 - r)\rho)\mathcal{R}_0$$

with $r = a_c s_c$ and compliance level ρ

Compliance

Incidence with noncompliance



quick increase to 20,000 new cases per day, then reduce $a_c s_c$ to $\frac{1}{2}$

total infections for different compliance levels

source: https://cosimo.fzjuelich.de/

control reproduction number:

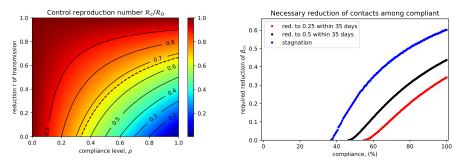
$$\mathcal{R}_c = (r\rho + 1 - \rho)\mathcal{R}_0 = (1 - (1 - r)\rho)\mathcal{R}_0$$

with $r = a_c s_c$ and compliance level ρ

Compliance

\mathcal{R}_c vs. R_t

$$\mathcal{R}_c = (r\rho + 1 - \rho)\mathcal{R}_0 = (1 - (1 - r)\rho)\mathcal{R}_0$$



theoretical control reproduction number depending on r,ρ

 (ρ,r) combinations required for different incidence goals

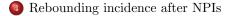
As long as $S \approx N$ and the prevalence is small, \mathcal{R}_c is a good approximation for R_t

Outline

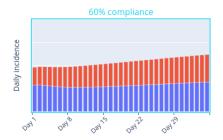
1 Basic modeling assumptions

2 Under ascertainment and testing capacity

(Non)compliance with non pharmaceutical interventions



Rebound effect: motivation



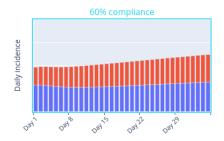
brief stagnation of incidence after intervention

then: incidence rises again

Are people becoming complacent once an intervention shows an effect?

- Not necessarily: transient drops of incidence despite $\mathcal{R}_c > 1$ are possible:
- 1. instantaneous drop of new infections
- 2. rotation in phase space

Rebound effect: motivation



brief stagnation of incidence after intervention

then: incidence rises again

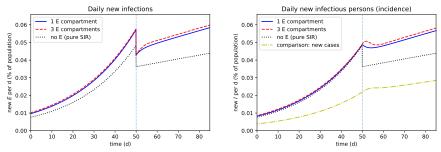
Are people becoming complacent once an intervention shows an effect? Not necessarily: transient drops of incidence despite $\mathcal{R}_c > 1$ are possible: 1. instantaneous drop of new infections

2. rotation in phase space

Rebound effect: explanation 1

following actual new infections

- consider simple model with uniform compliance
- observe difference between new infections, new infectious individuals, and new cases



 $\mathcal{R}_0 \approx 1.5 \text{ (for 50 days)}$ intervention on day 50: decrease β by 25% $\implies \mathcal{R}_c \approx 1.125$

for heterogeneous population: rotation in phase space

- $\bullet\,$ before intervention: compliant fraction among infected individuals equals ρ
- after intervention: noncompliant fraction among infected individuals rises illustration at simple SIR model with compliance:

$$\dot{S}_m = -(\beta_{cm}I_c + \beta_{nm}I_n)S_m, \qquad \dot{I}_m = (\beta_{cm}I_c + \beta_{nm}I_n)S_m - \gamma I_m$$

linearization about DFE $(\rho N, (1 - \rho)N, 0, 0)$:

$$\beta_0 N \begin{pmatrix} -a_c s_c I_c - a_n s_c I_n & 0 & -a_c s_c \rho & -a_n s_c \rho \\ 0 & -a_c s_n I_c - a_n s_n I_n & -a_c s_n (1-\rho) & -a_n s_n (1-\rho) \\ a_c s_c I_c + a_n s_c I_n & 0 & a_c s_c \rho - \frac{\gamma}{\beta_0 N} & a_n s_c \rho \\ 0 & a_c s_n I_c + a_n s_n I_n & a_c s_n (1-\rho) & a_n s_n (1-\rho) - \frac{\gamma}{\beta_0 N} \end{pmatrix}$$

for heterogeneous population: rotation in phase space

- $\bullet\,$ before intervention: compliant fraction among infected individuals equals ρ
- after intervention: noncompliant fraction among infected individuals rises illustration at simple SIR model with compliance:

$$\dot{S}_m = -(\beta_{cm}I_c + \beta_{nm}I_n)S_m, \qquad \dot{I}_m = (\beta_{cm}I_c + \beta_{nm}I_n)S_m - \gamma I_m$$

consider (with $\beta = \beta_0 N$):

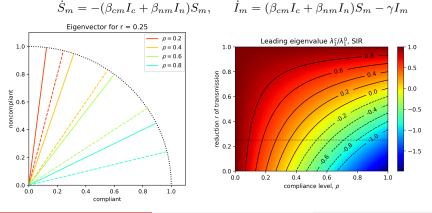
$$\begin{pmatrix} \beta a_c s_c \rho - \gamma & \beta s_c \rho \\ \beta a_c (1 - \rho) & \beta (1 - \rho) - \gamma \end{pmatrix}, \quad \text{EVal}: \quad \begin{array}{l} \lambda_1 = \beta (a_c s_c \rho + (1 - \rho)) - \gamma \\ \lambda_2 = -\gamma < 0 \end{array}$$

 $\mathcal{R}_c = (a_c s_c \rho + (1 - \rho)) \frac{\beta}{\gamma} > 1 \iff \lambda_1 > 0$ (NGM approach)

eigenvector for λ_1 in I_c - I_n plane: $(\mathbf{s_c}\rho, 1-\rho)^T$

for heterogeneous population: rotation in phase space

- $\bullet\,$ before intervention: compliant fraction among infected individuals equals ρ
- after intervention: noncompliant fraction among infected individuals rises illustration at simple SIR model with compliance:

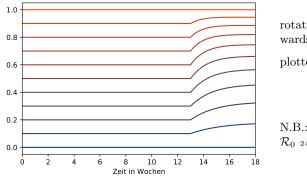


J Fuhrmann, JH Meinke (IAM/JSC)

for heterogeneous population: rotation in phase space

- before intervention: compliant fraction among infected individuals equals ρ
- after intervention: noncompliant fraction among infected individuals rises illustration at simple SIR model with compliance:

$$\dot{S}_m = -(\beta_{cm}I_c + \beta_{nm}I_n)S_m, \qquad \dot{I}_m = (\beta_{cm}I_c + \beta_{nm}I_n)S_m - \gamma I_m$$



Anteil noncompliant unter Infizierten, r = 0.25, SIR

rotation of solution vector towards eigenvector for λ_1

plotted:

$$\frac{I_n}{I_n + I_c}$$

N.B.: can occur even with $\mathcal{R}_c =$ $\mathcal{R}_{0,24}$

Thanks to the contributors

- Jens Henrik Göbbert, Alice Grosch, Stefan Krieg, Thomas Lippert, Daniel Rohe (JSC)
- Maria Barbarossa, Julian Heidecke, Lukas Schneider, Christine Thomas (FIAS)
- Hridya Vinod Varma (IWR Heidelberg)
- Noemi Castelletti (HZM, LMU)

and

to you for your attention