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Why take into account uncertainty in forecast evaluation?

I Forecast quality cannot be fully described considering only the
central tendency:
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I Good forecasts “maximize sharpness subject to calibration”

I Proper scoring rules (Gneiting and Raftery 2007) allow us to
compare probabilistic forecasts
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I Good forecasts “maximize sharpness subject to calibration”

I Proper scoring rules (Gneiting and Raftery 2007) allow us to
compare probabilistic forecasts



Proper scoring rules
Gneiting and Ratery 2007, https://doi.org/10.1198/016214506000001437

I Proper scoring rules encourage honest forecasting
I Forecasters maximize the (subjective) expected score by

reporting their actual predictive distribution
I No way to “cheat the score”
I Good forecasts “maximize sharpness subject to calibration”

https://doi.org/10.1198/016214506000001437


Proper scoring rules (continued)

I Popular choices:
I logarithmic score / predictive log-likelihood:

logS(F , y) = log{f (y)},

ie the predictive density at the observed value y .
I continuous ranked probability score (CRPS):

CRPS(F , y) =

∫ ∞
−∞
{F (x)− 1(x ≥ y)}2dx ,

ie the integrated squared distance between predictive and
observed CDF.

I Typically require full predictive distribution!



The interval score
Consider a central (1− α)× 100% prediction interval [l , u] and
observation y . The interval score is given by

ISα(F , y) = (u − l)︸ ︷︷ ︸
spread

+
2

α
(l − y)1(y < l)︸ ︷︷ ︸

penalty for underprediction

+
2

α
(y − u)1(y > u)︸ ︷︷ ︸

penalty for overprediction

,

where 1 is the indicator function.



The weighted interval score
Bracher, Ray, Gneiting, Reich (2021)

To assess prediction intervals at levels (1− α0, . . . , 1− αK )
simultaneously we can use the weighted interval score:

WISα0:K
(F , y) =

1

K + 1/2
×

{
1

2
|y −m| +

K∑
k=0

α

2
× ISαk

(F , y)

}
,

where m is the predictive median.
This approximates the CRPS and generalizes the AE.
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where m is the predictive median.

Equivalent to “pinball loss” known eg from quantile regression:

WISα0:K
(F , y) =

1

2K + 1
×

2K+1∑
i=1

2× {1(y ≤ qτi )− τi} × (qτi − y),

where qτi , i = 1, . . . , 2K are the 2K + 2 available quantiles and τi
are the respective levels.



Example (using FluSight data)



Application in practice

I Proper scores can be averaged across weeks/locations/targets.

I Typically complemented with measures of quality of point
forecasts (note: WIS can be compared to absolute errors of
deterministic forecasts.)

I Calibration can be assessed separately via coverage
probabilities and PIT histograms.


