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Why take into account uncertainty in forecast evaluation?

» Forecast quality cannot be fully described considering only the
central tendency:
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» Good forecasts “maximize sharpness subject to calibration”

» Proper scoring rules (Gneiting and Raftery 2007) allow us to
compare probabilistic forecasts
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Proper scoring rules
Gneiting and Ratery 2007, https://doi.org/10.1198/016214506000001437

> Proper scoring rules encourage honest forecasting
> Forecasters maximize the (subjective) expected score by
reporting their actual predictive distribution
»> No way to “cheat the score”
» Good forecasts “maximize sharpness subject to calibration”


https://doi.org/10.1198/016214506000001437

Proper scoring rules (continued)

» Popular choices:
> logarithmic score / predictive log-likelihood:

logS(F,y) = log{f(y)},

ie the predictive density at the observed value y.
> continuous ranked probability score (CRPS):

CRPS(F,y) = /jo {F(x) = 1(x > y)}?dx,

ie the integrated squared distance between predictive and
observed CDF.

> Typically require full predictive distribution!



The interval score
Consider a central (1 — a) x 100% prediction interval [/, u] and
observation y. The interval score is given by

Q (@]

SalFoy)=(u—1) + (-l <1) + 2(y—u)lly > u),

spread . .
pr penalty for underprediction penalty for overprediction

where 1 is the indicator function.
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The weighted interval score

Bracher, Ray, Gneiting, Reich (2021)
To assess prediction intervals at levels (1 — ag,...,1 — ak)
simultaneously we can use the weighted interval score:

WiSaq, (F,y) = K+1/2 { ly —m| + Z X 1Sq, (F y)}

where m is the predictive median.
This approximates the CRPS and generalizes the AE.
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The weighted interval score

Bracher, Ray, Gneiting, Reich (2021)
To assess prediction intervals at levels (1 — ag,...,1 — ak)
simultaneously we can use the weighted interval score:

1
WiSae(F.Y) = 577 {y m|+z ISakFy)}

where m is the predictive median.
This approximates the CRPS and generalizes the AE.
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The weighted interval score
Bracher, Ray, Gneiting, Reich (2021)

To assess prediction intervals at levels (1 — ap, ..., 1 — ak)
simultaneously we can use the weighted interval score:

K
1 1 Za
WISO‘O:K(F7y): K+1/2 X {2‘y_m‘ + 5 X ISak(F7.y)}7
k=0

where m is the predictive median.
Equivalent to “pinball loss” known eg from quantile regression:

2K+1
WiSaou(Foy) = 557 % 2 2% {1y < 4r) = 7i} x (4 = ),
i=1

where g, i =1,...,2K are the 2K + 2 available quantiles and 7;
are the respective levels.



Example (using FluSight data)
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Application in practice

» Proper scores can be averaged across weeks/locations/targets.

» Typically complemented with measures of quality of point
forecasts (note: WIS can be compared to absolute errors of
deterministic forecasts.)

» Calibration can be assessed separately via coverage
probabilities and PIT histograms.



